Evaluation of Deep Learning Methods in a Dual Prediction Scheme to Reduce Transmission Data in a WSN
One of the most important challenges in Wireless Sensor Networks (WSN) is the extension of the sensors lifetime, which are battery-powered devices, through a reduction in energy consumption. Using data prediction to decrease the amount of transmitted data is one of the approaches to solve this probl...
Guardado en:
Autores principales: | Carlos R. Morales, Fernando Rangel de Sousa, Valner Brusamarello, Nestor C. Fernandes |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af695a3400ba4e4786aa9ba5820e75fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Congestion Control in Cognitive IoT-Based WSN Network for Smart Agriculture
por: Daniyal Alghazzawi, et al.
Publicado: (2021) -
An Efficient Content Store-Based Forwarding Scheme for Internet of Things
por: Ngoc-Thanh Dinh, et al.
Publicado: (2021) -
Optimization-Based Approaches for Minimizing Deployment Costs for Wireless Sensor Networks with Bounded Estimation Errors
por: Chiu-Han Hsiao, et al.
Publicado: (2021) -
Data Transmission Reduction in Wireless Sensor Network for Spatial Event Detection
por: Marcin Lewandowski, et al.
Publicado: (2021) -
An Open-Source Wireless Sensor Node Platform with Active Node-Level Reliability for Monitoring Applications
por: Dominik Widhalm, et al.
Publicado: (2021)