Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images
Self-supervised method has proven to be a suitable approach for despeckling on synthetic aperture radar (SAR) images. However, most self-supervised despeckling methods are trained by noisy-noisy image pairs, which are constructed by using natural images with simulated speckle noise, time-series real...
Guardado en:
Autores principales: | Gang Zhang, Zhi Li, Xuewei Li, Sitong Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af7902b8d2054e7d8b7a51424ef8c487 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Flexible Region of Interest Extraction Algorithm with Adaptive Threshold for 3-D Synthetic Aperture Radar Images
por: Liang Li, et al.
Publicado: (2021) -
Multi-Hypothesis Topological Isomorphism Matching Method for Synthetic Aperture Radar Images with Large Geometric Distortion
por: Runzhi Jiao, et al.
Publicado: (2021) -
Radar imaging complex with SAR and ASR for aerospace vechicle
por: Volodimir Pavlikov, et al.
Publicado: (2021) -
A Full-Polarization Radar Image Reconstruction Method with Orthogonal Coding Apertures
por: Tiehua Zhao, et al.
Publicado: (2021) -
L-Band SAR Co-Polarized Phase Difference Modeling for Corn Fields
por: Matías Ernesto Barber, et al.
Publicado: (2021)