Facile Synthesis of MgO-Modified Carbon Adsorbents with Microwave- Assisted Methods: Effect of MgO Particles and Porosities on CO2 Capture

Abstract In this study, magnesium oxide (MgO)-modified carbon adsorbents were fabricated using a nitrogen-enriched carbon precursor by microwave-assisted irradiation for CO2 capture. The X-ray diffraction (XRD) patterns showed the characteristic diffraction peaks of MgO at 43° and 62.5°, and no impu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Young-Jung Heo, Soo-Jin Park
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/af7f439a95de436ea7ed052aac8a1304
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this study, magnesium oxide (MgO)-modified carbon adsorbents were fabricated using a nitrogen-enriched carbon precursor by microwave-assisted irradiation for CO2 capture. The X-ray diffraction (XRD) patterns showed the characteristic diffraction peaks of MgO at 43° and 62.5°, and no impurities were apparent. By changing the microwave reaction time, the spherical structure of the parent material was transformed to a hybrid structure with MgO crystalline particles in a carbon matrix. The morphology evolution and properties of the prepared materials were also investigated using transmission electron microscopy and N2 adsorption, respectively. On optimising the conditions, the prepared sample attained a high CO2 uptake of 1.22 mmol/g (5.3 wt.%) under flue gas conditions (15% CO2 in N2). It was found that MgO affected the CO2 capture behaviour by enhancing the fundamental characteristics of the carbon surfaces.