Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks

The clogging of piezoelectric nozzles is a typical problem in various additive binder jetting processes, such as the manufacturing of casting molds. This work aims at print head monitoring in these binder jetting processes. The structure-born noise of piezoelectric print modules is analyzed with an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Philipp Lechner, Philipp Heinle, Christoph Hartmann, Constantin Bauer, Benedikt Kirchebner, Fabian Dobmeier, Wolfram Volk
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/af84aff0e17442789aae5ce8bc74a002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:af84aff0e17442789aae5ce8bc74a002
record_format dspace
spelling oai:doaj.org-article:af84aff0e17442789aae5ce8bc74a0022021-11-25T16:34:55ZFeasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks10.3390/app1122106722076-3417https://doaj.org/article/af84aff0e17442789aae5ce8bc74a0022021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/22/10672https://doaj.org/toc/2076-3417The clogging of piezoelectric nozzles is a typical problem in various additive binder jetting processes, such as the manufacturing of casting molds. This work aims at print head monitoring in these binder jetting processes. The structure-born noise of piezoelectric print modules is analyzed with an Artificial Neural Network to classify whether the nozzles are functional or clogged. The acoustic data are studied in the frequency domain and utilized as input for an Artificial Neural Network. We found that it is possible to successfully classify individual nozzles well enough to implement a print head monitoring, which automatically determines whether the print head needs maintenance.Philipp LechnerPhilipp HeinleChristoph HartmannConstantin BauerBenedikt KirchebnerFabian DobmeierWolfram VolkMDPI AGarticleacoustic monitoringstructure-born noisebinder jettingcore materialswater-glassneural networksTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10672, p 10672 (2021)
institution DOAJ
collection DOAJ
language EN
topic acoustic monitoring
structure-born noise
binder jetting
core materials
water-glass
neural networks
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle acoustic monitoring
structure-born noise
binder jetting
core materials
water-glass
neural networks
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Philipp Lechner
Philipp Heinle
Christoph Hartmann
Constantin Bauer
Benedikt Kirchebner
Fabian Dobmeier
Wolfram Volk
Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks
description The clogging of piezoelectric nozzles is a typical problem in various additive binder jetting processes, such as the manufacturing of casting molds. This work aims at print head monitoring in these binder jetting processes. The structure-born noise of piezoelectric print modules is analyzed with an Artificial Neural Network to classify whether the nozzles are functional or clogged. The acoustic data are studied in the frequency domain and utilized as input for an Artificial Neural Network. We found that it is possible to successfully classify individual nozzles well enough to implement a print head monitoring, which automatically determines whether the print head needs maintenance.
format article
author Philipp Lechner
Philipp Heinle
Christoph Hartmann
Constantin Bauer
Benedikt Kirchebner
Fabian Dobmeier
Wolfram Volk
author_facet Philipp Lechner
Philipp Heinle
Christoph Hartmann
Constantin Bauer
Benedikt Kirchebner
Fabian Dobmeier
Wolfram Volk
author_sort Philipp Lechner
title Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks
title_short Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks
title_full Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks
title_fullStr Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks
title_full_unstemmed Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networks
title_sort feasibility of acoustic print head monitoring for binder jetting processes with artificial neural networks
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/af84aff0e17442789aae5ce8bc74a002
work_keys_str_mv AT philipplechner feasibilityofacousticprintheadmonitoringforbinderjettingprocesseswithartificialneuralnetworks
AT philippheinle feasibilityofacousticprintheadmonitoringforbinderjettingprocesseswithartificialneuralnetworks
AT christophhartmann feasibilityofacousticprintheadmonitoringforbinderjettingprocesseswithartificialneuralnetworks
AT constantinbauer feasibilityofacousticprintheadmonitoringforbinderjettingprocesseswithartificialneuralnetworks
AT benediktkirchebner feasibilityofacousticprintheadmonitoringforbinderjettingprocesseswithartificialneuralnetworks
AT fabiandobmeier feasibilityofacousticprintheadmonitoringforbinderjettingprocesseswithartificialneuralnetworks
AT wolframvolk feasibilityofacousticprintheadmonitoringforbinderjettingprocesseswithartificialneuralnetworks
_version_ 1718413096268070912