Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs
Jinhyang Choi,1,2 Eunjung Ko,1 Hye-Kyung Chung,3 Jae Hee Lee,1 Eun Jin Ju,1 Hyun Kyung Lim,4 Intae Park,1 Kab-Sig Kim,5 Joo-Hwan Lee,5 Woo-Chan Son,6 Jung Shin Lee,1,7 Joohee Jung,1,4 Seong-Yun Jeong,1,2 Si Yeol Song,1,8 Eun Kyung Choi1,3,8 1Institute for Innovative Cancer Research, 2Asan Institute...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af864bd4482a4b31bcec3d86a50f18da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:af864bd4482a4b31bcec3d86a50f18da |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:af864bd4482a4b31bcec3d86a50f18da2021-12-02T07:36:52ZNanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs1178-2013https://doaj.org/article/af864bd4482a4b31bcec3d86a50f18da2015-09-01T00:00:00Zhttps://www.dovepress.com/nanoparticulated-docetaxel-exerts-enhanced-anticancer-efficacy-and-ove-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jinhyang Choi,1,2 Eunjung Ko,1 Hye-Kyung Chung,3 Jae Hee Lee,1 Eun Jin Ju,1 Hyun Kyung Lim,4 Intae Park,1 Kab-Sig Kim,5 Joo-Hwan Lee,5 Woo-Chan Son,6 Jung Shin Lee,1,7 Joohee Jung,1,4 Seong-Yun Jeong,1,2 Si Yeol Song,1,8 Eun Kyung Choi1,3,8 1Institute for Innovative Cancer Research, 2Asan Institute for Life Sciences, 3Center for Development and Commercialization of Anti-cancer Therapeutics, 4College of Pharmacy, Duksung Women’s University, 5Bio-Synectics, 6Department of Pathology, 7Department of Internal Medicine, 8Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs. Keywords: Nufs-DTX, docetaxel, anticancer efficacy, toxicityChoi JKo EChung HKLee JHJu EJLim HKPark IKim KSLee JHSon WCLee JSJung JJeong SYSong SYChoi EKDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 6121-6132 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Choi J Ko E Chung HK Lee JH Ju EJ Lim HK Park I Kim KS Lee JH Son WC Lee JS Jung J Jeong SY Song SY Choi EK Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs |
description |
Jinhyang Choi,1,2 Eunjung Ko,1 Hye-Kyung Chung,3 Jae Hee Lee,1 Eun Jin Ju,1 Hyun Kyung Lim,4 Intae Park,1 Kab-Sig Kim,5 Joo-Hwan Lee,5 Woo-Chan Son,6 Jung Shin Lee,1,7 Joohee Jung,1,4 Seong-Yun Jeong,1,2 Si Yeol Song,1,8 Eun Kyung Choi1,3,8 1Institute for Innovative Cancer Research, 2Asan Institute for Life Sciences, 3Center for Development and Commercialization of Anti-cancer Therapeutics, 4College of Pharmacy, Duksung Women’s University, 5Bio-Synectics, 6Department of Pathology, 7Department of Internal Medicine, 8Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs. Keywords: Nufs-DTX, docetaxel, anticancer efficacy, toxicity |
format |
article |
author |
Choi J Ko E Chung HK Lee JH Ju EJ Lim HK Park I Kim KS Lee JH Son WC Lee JS Jung J Jeong SY Song SY Choi EK |
author_facet |
Choi J Ko E Chung HK Lee JH Ju EJ Lim HK Park I Kim KS Lee JH Son WC Lee JS Jung J Jeong SY Song SY Choi EK |
author_sort |
Choi J |
title |
Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs |
title_short |
Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs |
title_full |
Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs |
title_fullStr |
Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs |
title_full_unstemmed |
Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs |
title_sort |
nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs |
publisher |
Dove Medical Press |
publishDate |
2015 |
url |
https://doaj.org/article/af864bd4482a4b31bcec3d86a50f18da |
work_keys_str_mv |
AT choij nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT koe nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT chunghk nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT leejh nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT juej nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT limhk nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT parki nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT kimks nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT leejh nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT sonwc nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT leejs nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT jungj nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT jeongsy nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT songsy nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs AT choiek nanoparticulateddocetaxelexertsenhancedanticancerefficacyandovercomesexistinglimitationsoftraditionaldrugs |
_version_ |
1718399358138843136 |