A soft voting ensemble classifier for early prediction and diagnosis of occurrences of major adverse cardiovascular events for STEMI and NSTEMI during 2-year follow-up in patients with acute coronary syndrome.

<h4>Objective</h4>Some researchers have studied about early prediction and diagnosis of major adverse cardiovascular events (MACE), but their accuracies were not high. Therefore, this paper proposes a soft voting ensemble classifier (SVE) using machine learning (ML) algorithms.<h4>...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Syed Waseem Abbas Sherazi, Jang-Whan Bae, Jong Yun Lee
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/af8e887fc888409bac96bb8e81bf06d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Objective</h4>Some researchers have studied about early prediction and diagnosis of major adverse cardiovascular events (MACE), but their accuracies were not high. Therefore, this paper proposes a soft voting ensemble classifier (SVE) using machine learning (ML) algorithms.<h4>Methods</h4>We used the Korea Acute Myocardial Infarction Registry dataset and selected 11,189 subjects among 13,104 with the 2-year follow-up. It was subdivided into two groups (ST-segment elevation myocardial infarction (STEMI), non ST-segment elevation myocardial infarction NSTEMI), and then subdivided into training (70%) and test dataset (30%). Third, we selected the ranges of hyper-parameters to find the best prediction model from random forest (RF), extra tree (ET), gradient boosting machine (GBM), and SVE. We generated each ML-based model with the best hyper-parameters, evaluated by 5-fold stratified cross-validation, and then verified by test dataset. Lastly, we compared the performance in the area under the ROC curve (AUC), accuracy, precision, recall, and F-score.<h4>Results</h4>The accuracies for RF, ET, GBM, and SVE were (88.85%, 88.94%, 87.84%, 90.93%) for complete dataset, (84.81%, 85.00%, 83.70%, 89.07%) STEMI, (88.81%, 88.05%, 91.23%, 91.38%) NSTEMI. The AUC values in RF were (98.96%, 98.15%, 98.81%), ET (99.54%, 99.02%, 99.00%), GBM (98.92%, 99.33%, 99.41%), and SVE (99.61%, 99.49%, 99.42%) for complete dataset, STEMI, and NSTEMI, respectively. Consequently, the accuracy and AUC in SVE outperformed other ML models.<h4>Conclusions</h4>The performance of our SVE was significantly higher than other machine learning models (RF, ET, GBM) and its major prognostic factors were different. This paper will lead to the development of early risk prediction and diagnosis tool of MACE in ACS patients.