Risk markers by sex for in-hospital mortality in patients with acute coronary syndrome: A machine learning approach
Background:: Several studies have highlighted the importance of considering sex differences in the diagnosis and treatment of Acute Coronary Syndrome (ACS). However, the identification of sex-specific risk markers in ACS sub-populations has been scarcely studied. The present study aims to explore ma...
Guardado en:
Autores principales: | Blanca Vázquez, Gibran Fuentes-Pineda, Fabian García, Gabriela Borrayo, Juan Prohías |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af950418c6ab4d5e8c5a3b097dc1eeb8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Understanding the complexity of sepsis mortality prediction via rule discovery and analysis: a pilot study
por: Ying Wu, et al.
Publicado: (2021) -
Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare
por: Davide Cirillo, et al.
Publicado: (2020) -
Predicting COVID-19 mortality with electronic medical records
por: Hossein Estiri, et al.
Publicado: (2021) -
Automated coronary calcium scoring using deep learning with multicenter external validation
por: David Eng, et al.
Publicado: (2021) -
Research on the Health Literacy Status and Compliance Behavior of Patients with Acute Coronary Syndrome
por: Huanya Liu, et al.
Publicado: (2021)