Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu
Education at this time is an important requirement in facing the demands of an increasingly advanced era in technolo-gy. To compensate this, the existing educational standards in universities must also be improved, this is a bit much affect the pattern of teaching from universities that produce qual...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN ID |
Publicado: |
P3M Politeknik Negeri Banjarmasin
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/af9bb90c7b734c5681b00e044abc6465 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:af9bb90c7b734c5681b00e044abc6465 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:af9bb90c7b734c5681b00e044abc64652021-12-02T10:53:02ZOptimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu2598-32452598-328810.31961/eltikom.v1i2.29https://doaj.org/article/af9bb90c7b734c5681b00e044abc64652018-01-01T00:00:00Zhttp://eltikom.poliban.ac.id/index.php/eltikom/article/view/29https://doaj.org/toc/2598-3245https://doaj.org/toc/2598-3288Education at this time is an important requirement in facing the demands of an increasingly advanced era in technolo-gy. To compensate this, the existing educational standards in universities must also be improved, this is a bit much affect the pattern of teaching from universities that produce qualified graduates who can compete in the world of work later and indirectly give a positive impact on the university itself. Qualified graduates are of course not only depending on the role of a university but also majors and quality of education as long as students are still in high school / vocational school also plays an important role. Results of the on-time graduation rate prediction research can be used as an information to im-prove the quality and optimization of the education system but it requires a maximum degree of accuracy. This research predicts on time graduation rates by conducting analysis using data mining classification techniques. Naïve Bayes algo-rithm that are used for this research will be discussed as a reference in conducting research. The author performs a series of different experimental scenarios / cross validation to perform comparisons that can give a difference in the level of ac-curacy gained from this research. The results of this research indicate that with the addition of Cross Validation testing scenario there is an increase of 2% accuracy of the test.Yohakim Benedictus SamponuKusrini KusriniP3M Politeknik Negeri Banjarmasinarticledata mining, Cross Validation, Naïve BayesElectrical engineering. Electronics. Nuclear engineeringTK1-9971Information technologyT58.5-58.64ENIDJurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, Vol 1, Iss 2, Pp 56-63 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN ID |
topic |
data mining, Cross Validation, Naïve Bayes Electrical engineering. Electronics. Nuclear engineering TK1-9971 Information technology T58.5-58.64 |
spellingShingle |
data mining, Cross Validation, Naïve Bayes Electrical engineering. Electronics. Nuclear engineering TK1-9971 Information technology T58.5-58.64 Yohakim Benedictus Samponu Kusrini Kusrini Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu |
description |
Education at this time is an important requirement in facing the demands of an increasingly advanced era in technolo-gy. To compensate this, the existing educational standards in universities must also be improved, this is a bit much affect the pattern of teaching from universities that produce qualified graduates who can compete in the world of work later and indirectly give a positive impact on the university itself. Qualified graduates are of course not only depending on the role of a university but also majors and quality of education as long as students are still in high school / vocational school also plays an important role. Results of the on-time graduation rate prediction research can be used as an information to im-prove the quality and optimization of the education system but it requires a maximum degree of accuracy. This research predicts on time graduation rates by conducting analysis using data mining classification techniques. Naïve Bayes algo-rithm that are used for this research will be discussed as a reference in conducting research. The author performs a series of different experimental scenarios / cross validation to perform comparisons that can give a difference in the level of ac-curacy gained from this research. The results of this research indicate that with the addition of Cross Validation testing scenario there is an increase of 2% accuracy of the test. |
format |
article |
author |
Yohakim Benedictus Samponu Kusrini Kusrini |
author_facet |
Yohakim Benedictus Samponu Kusrini Kusrini |
author_sort |
Yohakim Benedictus Samponu |
title |
Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu |
title_short |
Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu |
title_full |
Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu |
title_fullStr |
Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu |
title_full_unstemmed |
Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu |
title_sort |
optimasi algoritma naive bayes menggunakan metode cross validation untuk meningkatkan akurasi prediksi tingkat kelulusan tepat waktu |
publisher |
P3M Politeknik Negeri Banjarmasin |
publishDate |
2018 |
url |
https://doaj.org/article/af9bb90c7b734c5681b00e044abc6465 |
work_keys_str_mv |
AT yohakimbenedictussamponu optimasialgoritmanaivebayesmenggunakanmetodecrossvalidationuntukmeningkatkanakurasiprediksitingkatkelulusantepatwaktu AT kusrinikusrini optimasialgoritmanaivebayesmenggunakanmetodecrossvalidationuntukmeningkatkanakurasiprediksitingkatkelulusantepatwaktu |
_version_ |
1718396551051608064 |