Synthesis of Fullerenes from a Nonaromatic Chloroform through a Newly Developed Ultrahigh-Temperature Flash Vacuum Pyrolysis Apparatus

The flash vacuum pyrolysis (FVP) technique is useful for preparing curved polycyclic aromatic compounds (PAHs) and caged nanocarbon molecules, such as the well-known corannulene and fullerene C<sub>60</sub>. However, the operating temperature of the traditional FVP apparatus is limited t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hong-Gang Zhang, Ya-Qi Zhuo, Xiao-Min Zhang, Leng Zhang, Piao-Yang Xu, Han-Rui Tian, Shui-Chao Lin, Qianyan Zhang, Su-Yuan Xie, Lan-Sun Zheng
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/afab3de2800c4ca8a8e33f95d9f645f0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The flash vacuum pyrolysis (FVP) technique is useful for preparing curved polycyclic aromatic compounds (PAHs) and caged nanocarbon molecules, such as the well-known corannulene and fullerene C<sub>60</sub>. However, the operating temperature of the traditional FVP apparatus is limited to ~1250 °C, which is not sufficient to overcome the high energy barriers of some reactions. Herein, we report an ultrahigh-temperature FVP (UT-FVP) apparatus with a controllable operating temperature of up to 2500 °C to synthesize fullerene C<sub>60</sub> from a nonaromatic single carbon reactant, i.e., chloroform, at 1350 °C or above. Fullerene C<sub>60</sub> cannot be obtained from CHCl<sub>3</sub> using the traditional FVP apparatus because of the limitation of the reaction temperature. The significant improvements in the UT-FVP apparatus, compared to the traditional FVP apparatus, were the replacement of the quartz tube with a graphite tube and the direct heating of the graphite tube by impedance heating instead of indirect heating of the quartz tube using an electric furnace. Because of the higher temperature range, UT-FVP can not only synthesize fullerene C<sub>60</sub> from single carbon nonaromatic reactants but sublimate some high-molecular-weight compounds to synthesize larger curved PAHs in the future.