Forecasting dryland vegetation condition months in advance through satellite data assimilation
Forecasting drought and its impact on agriculture and ecosystems is challenged by a lack of knowledge of vegetation access to deep moisture. Here the authors show that combining vegetation and water storage remote sensing can be used to infer this knowledge, allowing drought impact forecasts months...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afb25d8b12f44b40b62f2fe858714565 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:afb25d8b12f44b40b62f2fe858714565 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:afb25d8b12f44b40b62f2fe8587145652021-12-02T16:57:31ZForecasting dryland vegetation condition months in advance through satellite data assimilation10.1038/s41467-019-08403-x2041-1723https://doaj.org/article/afb25d8b12f44b40b62f2fe8587145652019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-08403-xhttps://doaj.org/toc/2041-1723Forecasting drought and its impact on agriculture and ecosystems is challenged by a lack of knowledge of vegetation access to deep moisture. Here the authors show that combining vegetation and water storage remote sensing can be used to infer this knowledge, allowing drought impact forecasts months in advance.Siyuan TianAlbert I. J. M. Van DijkPaul TregoningLuigi J. RenzulloNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Siyuan Tian Albert I. J. M. Van Dijk Paul Tregoning Luigi J. Renzullo Forecasting dryland vegetation condition months in advance through satellite data assimilation |
description |
Forecasting drought and its impact on agriculture and ecosystems is challenged by a lack of knowledge of vegetation access to deep moisture. Here the authors show that combining vegetation and water storage remote sensing can be used to infer this knowledge, allowing drought impact forecasts months in advance. |
format |
article |
author |
Siyuan Tian Albert I. J. M. Van Dijk Paul Tregoning Luigi J. Renzullo |
author_facet |
Siyuan Tian Albert I. J. M. Van Dijk Paul Tregoning Luigi J. Renzullo |
author_sort |
Siyuan Tian |
title |
Forecasting dryland vegetation condition months in advance through satellite data assimilation |
title_short |
Forecasting dryland vegetation condition months in advance through satellite data assimilation |
title_full |
Forecasting dryland vegetation condition months in advance through satellite data assimilation |
title_fullStr |
Forecasting dryland vegetation condition months in advance through satellite data assimilation |
title_full_unstemmed |
Forecasting dryland vegetation condition months in advance through satellite data assimilation |
title_sort |
forecasting dryland vegetation condition months in advance through satellite data assimilation |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/afb25d8b12f44b40b62f2fe858714565 |
work_keys_str_mv |
AT siyuantian forecastingdrylandvegetationconditionmonthsinadvancethroughsatellitedataassimilation AT albertijmvandijk forecastingdrylandvegetationconditionmonthsinadvancethroughsatellitedataassimilation AT paultregoning forecastingdrylandvegetationconditionmonthsinadvancethroughsatellitedataassimilation AT luigijrenzullo forecastingdrylandvegetationconditionmonthsinadvancethroughsatellitedataassimilation |
_version_ |
1718382522683883520 |