Forecasting dryland vegetation condition months in advance through satellite data assimilation
Forecasting drought and its impact on agriculture and ecosystems is challenged by a lack of knowledge of vegetation access to deep moisture. Here the authors show that combining vegetation and water storage remote sensing can be used to infer this knowledge, allowing drought impact forecasts months...
Guardado en:
Autores principales: | Siyuan Tian, Albert I. J. M. Van Dijk, Paul Tregoning, Luigi J. Renzullo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afb25d8b12f44b40b62f2fe858714565 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assessing the inter-annual variability of vegetation phenological events observed from satellite vegetation index time series in dryland sites
por: Anna Kato, et al.
Publicado: (2021) -
Improving weather forecasting by assimilation of water vapor isotopes
por: Masataka Tada, et al.
Publicado: (2021) -
Influence of inundation characteristics on the distribution of dryland floodplain vegetation communities
por: Sara Shaeri Karimi, et al.
Publicado: (2021) -
Short Communication: Species composition and diversity of vegetation in dryland agricultural landscape
por: Ida Ardiyaningrum, et al.
Publicado: (2020) -
Was Australia a sink or source of CO<sub>2</sub> in 2015? Data assimilation using OCO-2 satellite measurements
por: Y. Villalobos, et al.
Publicado: (2021)