Decentralized Distributed Deep Learning with Low-Bandwidth Consumption for Smart Constellations
For the space-based remote sensing system, onboard intelligent processing based on deep learning has become an inevitable trend. To adapt to the dynamic changes of the observation scenes, there is an urgent need to perform distributed deep learning onboard to fully utilize the plentiful real-time se...
Guardado en:
Autores principales: | Qingliang Meng, Meiyu Huang, Yao Xu, Naijin Liu, Xueshuang Xiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Association for the Advancement of Science (AAAS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afbd71e8a2d041fe99ee2012179f9d16 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Orbit Design Elements of Chang’e 5 Mission
por: Zhong-Sheng Wang, et al.
Publicado: (2021) -
Thermal Environment and Aeroheating Mechanism of Protuberances on Mars Entry Capsule
por: Miao Wenbo, et al.
Publicado: (2021) -
Developing Prototype Simulants for Surface Materials and Morphology of Near Earth Asteroid 2016 HO3
por: Xiaojing Zhang, et al.
Publicado: (2021) -
Performance Evaluation Indicators of Space Dynamic Networks under Broadcast Mechanism
por: Zipeng Ye, et al.
Publicado: (2021) -
A New Recursive Composite Adaptive Controller for Robot Manipulators
por: Jianfei Li, et al.
Publicado: (2021)