CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses

Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for m...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Xuan Zhou, Hae Kyung Im, S. Hong Lee
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f05
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for multi-omics analyses of phenotypic variance.