CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for m...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f05 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:afce71f5c58642fcbe15beea89cf3f05 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:afce71f5c58642fcbe15beea89cf3f052021-12-02T15:10:48ZCORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses10.1038/s41467-020-18085-52041-1723https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f052020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18085-5https://doaj.org/toc/2041-1723Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for multi-omics analyses of phenotypic variance.Xuan ZhouHae Kyung ImS. Hong LeeNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xuan Zhou Hae Kyung Im S. Hong Lee CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses |
description |
Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for multi-omics analyses of phenotypic variance. |
format |
article |
author |
Xuan Zhou Hae Kyung Im S. Hong Lee |
author_facet |
Xuan Zhou Hae Kyung Im S. Hong Lee |
author_sort |
Xuan Zhou |
title |
CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses |
title_short |
CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses |
title_full |
CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses |
title_fullStr |
CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses |
title_full_unstemmed |
CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses |
title_sort |
core greml for estimating covariance between random effects in linear mixed models for complex trait analyses |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f05 |
work_keys_str_mv |
AT xuanzhou coregremlforestimatingcovariancebetweenrandomeffectsinlinearmixedmodelsforcomplextraitanalyses AT haekyungim coregremlforestimatingcovariancebetweenrandomeffectsinlinearmixedmodelsforcomplextraitanalyses AT shonglee coregremlforestimatingcovariancebetweenrandomeffectsinlinearmixedmodelsforcomplextraitanalyses |
_version_ |
1718387711774031872 |