CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses

Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xuan Zhou, Hae Kyung Im, S. Hong Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:afce71f5c58642fcbe15beea89cf3f05
record_format dspace
spelling oai:doaj.org-article:afce71f5c58642fcbe15beea89cf3f052021-12-02T15:10:48ZCORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses10.1038/s41467-020-18085-52041-1723https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f052020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18085-5https://doaj.org/toc/2041-1723Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for multi-omics analyses of phenotypic variance.Xuan ZhouHae Kyung ImS. Hong LeeNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xuan Zhou
Hae Kyung Im
S. Hong Lee
CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
description Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for multi-omics analyses of phenotypic variance.
format article
author Xuan Zhou
Hae Kyung Im
S. Hong Lee
author_facet Xuan Zhou
Hae Kyung Im
S. Hong Lee
author_sort Xuan Zhou
title CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
title_short CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
title_full CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
title_fullStr CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
title_full_unstemmed CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
title_sort core greml for estimating covariance between random effects in linear mixed models for complex trait analyses
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f05
work_keys_str_mv AT xuanzhou coregremlforestimatingcovariancebetweenrandomeffectsinlinearmixedmodelsforcomplextraitanalyses
AT haekyungim coregremlforestimatingcovariancebetweenrandomeffectsinlinearmixedmodelsforcomplextraitanalyses
AT shonglee coregremlforestimatingcovariancebetweenrandomeffectsinlinearmixedmodelsforcomplextraitanalyses
_version_ 1718387711774031872