CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses
Linear mixed models have bias due to the assumed independence between random effects. Here, the authors describe a genome-based restricted maximum likelihood, CORE GREML, which estimates covariance between random effects. Application to UK Biobank data highlights this as an important parameter for m...
Guardado en:
Autores principales: | Xuan Zhou, Hae Kyung Im, S. Hong Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afce71f5c58642fcbe15beea89cf3f05 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Average semivariance yields accurate estimates of the fraction of marker-associated genetic variance and heritability in complex trait analyses.
por: Mitchell J Feldmann, et al.
Publicado: (2021) -
Sperm traits negatively covary with size and asymmetry of a secondary sexual trait in a freshwater crayfish.
por: Paolo Galeotti, et al.
Publicado: (2012) -
Hierarchical Bayesian estimation of covariate effects on airway and alveolar nitric oxide
por: Jingying Weng, et al.
Publicado: (2021) -
Covariation in plant functional traits and soil fertility within two species-rich forests.
por: Xiaojuan Liu, et al.
Publicado: (2012) -
An integrative analysis of genomic and exposomic data for complex traits and phenotypic prediction
por: Xuan Zhou, et al.
Publicado: (2021)