Prediction of mean wave overtopping at simple sloped breakwaters using kernel-based methods
The accurate prediction of the mean wave overtopping rate at breakwaters is vital for a safe design. Hence, providing a robust tool as a preliminary estimator can be useful for practitioners. Recently, soft computing tools such as artificial neural networks (ANN) have been developed as alternatives...
Guardado en:
Autores principales: | Shabnam Hosseinzadeh, Amir Etemad-Shahidi, Ali Koosheh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afcfc04513604982a298bbaa3f70596c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
Ejemplares similares
-
Insights into the prediction capability of roughness coefficient in current ripple bedforms under varied hydraulic conditions
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms
por: Asif Afzal, et al.
Publicado: (2021) -
Insect Protein Content Analysis in Handcrafted Fitness Bars by NIR Spectroscopy. Gaussian Process Regression and Data Fusion for Performance Enhancement of Miniaturized Cost-Effective Consumer-Grade Sensors
por: Krzysztof B. Beć, et al.
Publicado: (2021) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Chi-Ken Lu, et al.
Publicado: (2021) -
Evaluation of the machine learning classifier in wafer defects classification
por: Jessnor Arif Mat Jizat, et al.
Publicado: (2021)