On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models
In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in Bayesian...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afd2be041ecf41669e6c2c2c3cdce1ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:afd2be041ecf41669e6c2c2c3cdce1ba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:afd2be041ecf41669e6c2c2c3cdce1ba2021-11-25T18:16:55ZOn Johnson’s “Sufficientness” Postulates for Feature-Sampling Models10.3390/math92228912227-7390https://doaj.org/article/afd2be041ecf41669e6c2c2c3cdce1ba2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2891https://doaj.org/toc/2227-7390In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in Bayesian statistics, leading to predictive characterization for infinite-dimensional generalizations of the Dirichlet distribution, i.e., species-sampling models. In this paper, we review “sufficientness” postulates for species-sampling models, and then investigate analogous predictive characterizations for the more general feature-sampling models. In particular, we present a “sufficientness” postulate for a class of feature-sampling models referred to as Scaled Processes (SPs), and then discuss analogous characterizations in the general setup of feature-sampling models.Federico CamerlenghiStefano FavaroMDPI AGarticleBayesian nonparametricsexchangeabilityfeature-sampling modelde Finetti theoremJohnson’s “sufficientness” postulatepredictive distributionMathematicsQA1-939ENMathematics, Vol 9, Iss 2891, p 2891 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Bayesian nonparametrics exchangeability feature-sampling model de Finetti theorem Johnson’s “sufficientness” postulate predictive distribution Mathematics QA1-939 |
spellingShingle |
Bayesian nonparametrics exchangeability feature-sampling model de Finetti theorem Johnson’s “sufficientness” postulate predictive distribution Mathematics QA1-939 Federico Camerlenghi Stefano Favaro On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models |
description |
In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in Bayesian statistics, leading to predictive characterization for infinite-dimensional generalizations of the Dirichlet distribution, i.e., species-sampling models. In this paper, we review “sufficientness” postulates for species-sampling models, and then investigate analogous predictive characterizations for the more general feature-sampling models. In particular, we present a “sufficientness” postulate for a class of feature-sampling models referred to as Scaled Processes (SPs), and then discuss analogous characterizations in the general setup of feature-sampling models. |
format |
article |
author |
Federico Camerlenghi Stefano Favaro |
author_facet |
Federico Camerlenghi Stefano Favaro |
author_sort |
Federico Camerlenghi |
title |
On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models |
title_short |
On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models |
title_full |
On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models |
title_fullStr |
On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models |
title_full_unstemmed |
On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models |
title_sort |
on johnson’s “sufficientness” postulates for feature-sampling models |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/afd2be041ecf41669e6c2c2c3cdce1ba |
work_keys_str_mv |
AT federicocamerlenghi onjohnsonssufficientnesspostulatesforfeaturesamplingmodels AT stefanofavaro onjohnsonssufficientnesspostulatesforfeaturesamplingmodels |
_version_ |
1718411402350166016 |