Analysis of Stokes system with solution-dependent subdifferential boundary conditions

Abstract We study the Stokes problem for the incompressible fluid with mixed nonlinear boundary conditions of subdifferential type. The latter involve a unilateral boundary condition, the Navier slip condition, a nonmonotone version of the nonlinear Navier–Fujita slip condition, and the threshold sl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jing Zhao, Stanisław Migórski, Sylwia Dudek
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/afe2cd3226f54069afec2a37403266b6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We study the Stokes problem for the incompressible fluid with mixed nonlinear boundary conditions of subdifferential type. The latter involve a unilateral boundary condition, the Navier slip condition, a nonmonotone version of the nonlinear Navier–Fujita slip condition, and the threshold slip and leak condition of frictional type. The weak form of the problem leads to a new class of variational–hemivariational inequalities on convex sets for the velocity field. Solution existence and the weak compactness of the solution set to the inequality problem are established based on the Schauder fixed point theorem.