Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model.
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afe52a0b1a284d81b22dece5da73814b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:afe52a0b1a284d81b22dece5da73814b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:afe52a0b1a284d81b22dece5da73814b2021-11-25T06:07:30ZPlatelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model.1932-620310.1371/journal.pone.0102993https://doaj.org/article/afe52a0b1a284d81b22dece5da73814b2014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25054279/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.Ivan DimauroLoredana GrassoSimona FittipaldiCristina FantiniNeri MercatelliSilvia RaccaStefano GeunaAlessia Di GianfrancescoDaniela CaporossiFabio PigozziPaolo BorrionePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 7, p e102993 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ivan Dimauro Loredana Grasso Simona Fittipaldi Cristina Fantini Neri Mercatelli Silvia Racca Stefano Geuna Alessia Di Gianfrancesco Daniela Caporossi Fabio Pigozzi Paolo Borrione Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. |
description |
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration. |
format |
article |
author |
Ivan Dimauro Loredana Grasso Simona Fittipaldi Cristina Fantini Neri Mercatelli Silvia Racca Stefano Geuna Alessia Di Gianfrancesco Daniela Caporossi Fabio Pigozzi Paolo Borrione |
author_facet |
Ivan Dimauro Loredana Grasso Simona Fittipaldi Cristina Fantini Neri Mercatelli Silvia Racca Stefano Geuna Alessia Di Gianfrancesco Daniela Caporossi Fabio Pigozzi Paolo Borrione |
author_sort |
Ivan Dimauro |
title |
Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. |
title_short |
Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. |
title_full |
Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. |
title_fullStr |
Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. |
title_full_unstemmed |
Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. |
title_sort |
platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/afe52a0b1a284d81b22dece5da73814b |
work_keys_str_mv |
AT ivandimauro plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT loredanagrasso plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT simonafittipaldi plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT cristinafantini plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT nerimercatelli plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT silviaracca plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT stefanogeuna plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT alessiadigianfrancesco plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT danielacaporossi plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT fabiopigozzi plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel AT paoloborrione plateletrichplasmaandskeletalmusclehealingamolecularanalysisoftheearlyphasesoftheregenerationprocessinanexperimentalanimalmodel |
_version_ |
1718414183466270720 |