Deep learning to predict the lab-of-origin of engineered DNA
The synthetic biology era has seen a rapidly growing number of engineered DNA sequences. Here, the authors develop a deep learning method to predict the lab-of-origin of a DNA sequence based on hidden design signatures.
Guardado en:
Autores principales: | Alec A. K. Nielsen, Christopher A. Voigt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aff74158519949ea8e1e1dec52978d20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PlasmidHawk improves lab of origin prediction of engineered plasmids using sequence alignment
por: Qi Wang, et al.
Publicado: (2021) -
A deep learning framework combined with word embedding to identify DNA replication origins
por: Feng Wu, et al.
Publicado: (2021) -
Sequence-to-function deep learning frameworks for engineered riboregulators
por: Jacqueline A. Valeri, et al.
Publicado: (2020) -
Dreaming of the sleep lab.
por: Claudia Picard-Deland, et al.
Publicado: (2021) -
A deep learning model for predicting next-generation sequencing depth from DNA sequence
por: Jinny X. Zhang, et al.
Publicado: (2021)