Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom.
<h4>Background</h4>Food production accounts for 30% of global greenhouse gas (GHG) emissions. Less environmentally sustainable diets are also often more processed, energy-dense and nutrient-poor. To date, the environmental impact of diets have mostly been based on a limited number of bro...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/afffbc7cc90045298b6ad11541115fd5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:afffbc7cc90045298b6ad11541115fd5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:afffbc7cc90045298b6ad11541115fd52021-12-02T20:16:12ZVariations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom.1932-620310.1371/journal.pone.0259418https://doaj.org/article/afffbc7cc90045298b6ad11541115fd52021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0259418https://doaj.org/toc/1932-6203<h4>Background</h4>Food production accounts for 30% of global greenhouse gas (GHG) emissions. Less environmentally sustainable diets are also often more processed, energy-dense and nutrient-poor. To date, the environmental impact of diets have mostly been based on a limited number of broad food groups.<h4>Objectives</h4>We link GHG emissions to over 3000 foods, assessing associations between individuals' GHG emissions, their nutrient requirements and their demographic characteristics. We also identify additional information required in dietary assessment to generate more accurate environmental impact data for individual-level diets.<h4>Methods</h4>GHG emissions of individual foods, including process stages prior to retail, were added to the UK Composition Of Foods Integrated Dataset (COFID) composition tables and linked to automated online dietary assessment for 212 adults over three 24-hour periods. Variations in GHG emissions were explored by dietary pattern, demographic characteristics and World Health Organization Recommended Nutrient Intakes (RNIs).<h4>Results</h4>GHG emissions estimates were linked to 98% (n = 3233) of food items. Meat explained 32% of diet-related GHG emissions; 15% from drinks; 14% from dairy; and 8% from cakes, biscuits and confectionery. Non-vegetarian diets had GHG emissions 59% (95% CI 18%, 115%) higher than vegetarian. Men had 41% (20%, 64%) higher GHG emissions than women. Individuals meeting RNIs for saturated fats, carbohydrates and sodium had lower GHG emissions compared to those exceeding the RNI.<h4>Discussion</h4>Policies encouraging sustainable diets should focus on plant-based diets. Substituting tea, coffee and alcohol with more sustainable alternatives, whilst reducing less nutritious sweet snacks, presents further opportunities. Healthier diets had lower GHG emissions, demonstrating consistency between planetary and personal health. Further detail could be gained from incorporating brand, production methods, post-retail emissions, country of origin, and additional environmental impact indicators.Holly L RippinJanet E CadeLea Berrang-FordTim G BentonNeil HancockDarren C GreenwoodPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11, p e0259418 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Holly L Rippin Janet E Cade Lea Berrang-Ford Tim G Benton Neil Hancock Darren C Greenwood Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. |
description |
<h4>Background</h4>Food production accounts for 30% of global greenhouse gas (GHG) emissions. Less environmentally sustainable diets are also often more processed, energy-dense and nutrient-poor. To date, the environmental impact of diets have mostly been based on a limited number of broad food groups.<h4>Objectives</h4>We link GHG emissions to over 3000 foods, assessing associations between individuals' GHG emissions, their nutrient requirements and their demographic characteristics. We also identify additional information required in dietary assessment to generate more accurate environmental impact data for individual-level diets.<h4>Methods</h4>GHG emissions of individual foods, including process stages prior to retail, were added to the UK Composition Of Foods Integrated Dataset (COFID) composition tables and linked to automated online dietary assessment for 212 adults over three 24-hour periods. Variations in GHG emissions were explored by dietary pattern, demographic characteristics and World Health Organization Recommended Nutrient Intakes (RNIs).<h4>Results</h4>GHG emissions estimates were linked to 98% (n = 3233) of food items. Meat explained 32% of diet-related GHG emissions; 15% from drinks; 14% from dairy; and 8% from cakes, biscuits and confectionery. Non-vegetarian diets had GHG emissions 59% (95% CI 18%, 115%) higher than vegetarian. Men had 41% (20%, 64%) higher GHG emissions than women. Individuals meeting RNIs for saturated fats, carbohydrates and sodium had lower GHG emissions compared to those exceeding the RNI.<h4>Discussion</h4>Policies encouraging sustainable diets should focus on plant-based diets. Substituting tea, coffee and alcohol with more sustainable alternatives, whilst reducing less nutritious sweet snacks, presents further opportunities. Healthier diets had lower GHG emissions, demonstrating consistency between planetary and personal health. Further detail could be gained from incorporating brand, production methods, post-retail emissions, country of origin, and additional environmental impact indicators. |
format |
article |
author |
Holly L Rippin Janet E Cade Lea Berrang-Ford Tim G Benton Neil Hancock Darren C Greenwood |
author_facet |
Holly L Rippin Janet E Cade Lea Berrang-Ford Tim G Benton Neil Hancock Darren C Greenwood |
author_sort |
Holly L Rippin |
title |
Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. |
title_short |
Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. |
title_full |
Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. |
title_fullStr |
Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. |
title_full_unstemmed |
Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. |
title_sort |
variations in greenhouse gas emissions of individual diets: associations between the greenhouse gas emissions and nutrient intake in the united kingdom. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/afffbc7cc90045298b6ad11541115fd5 |
work_keys_str_mv |
AT hollylrippin variationsingreenhousegasemissionsofindividualdietsassociationsbetweenthegreenhousegasemissionsandnutrientintakeintheunitedkingdom AT janetecade variationsingreenhousegasemissionsofindividualdietsassociationsbetweenthegreenhousegasemissionsandnutrientintakeintheunitedkingdom AT leaberrangford variationsingreenhousegasemissionsofindividualdietsassociationsbetweenthegreenhousegasemissionsandnutrientintakeintheunitedkingdom AT timgbenton variationsingreenhousegasemissionsofindividualdietsassociationsbetweenthegreenhousegasemissionsandnutrientintakeintheunitedkingdom AT neilhancock variationsingreenhousegasemissionsofindividualdietsassociationsbetweenthegreenhousegasemissionsandnutrientintakeintheunitedkingdom AT darrencgreenwood variationsingreenhousegasemissionsofindividualdietsassociationsbetweenthegreenhousegasemissionsandnutrientintakeintheunitedkingdom |
_version_ |
1718374545958633472 |