Body Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children
Introduction: Body composition assessment is superior to the use of body mass index (BMI) to characterize the nutritional status in pediatric populations. For data interpretation, suitable reference data are needed; hence, we aimed to generate age-dependent and sex-specific body composition referenc...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Karger Publishers
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b00f19124ca14ccabf74e9e7129ca61c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b00f19124ca14ccabf74e9e7129ca61c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b00f19124ca14ccabf74e9e7129ca61c2021-11-04T14:40:31ZBody Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children1662-40251662-403310.1159/000518638https://doaj.org/article/b00f19124ca14ccabf74e9e7129ca61c2021-10-01T00:00:00Zhttps://www.karger.com/Article/FullText/518638https://doaj.org/toc/1662-4025https://doaj.org/toc/1662-4033Introduction: Body composition assessment is superior to the use of body mass index (BMI) to characterize the nutritional status in pediatric populations. For data interpretation, suitable reference data are needed; hence, we aimed to generate age-dependent and sex-specific body composition reference data in a larger population of children and adolescents in Germany. Methods: This is a cross-sectional study on a representative group of 15,392 5- to 17-year-old children and adolescents. Body composition was assessed by bioelectrical impedance analysis using a population-specific algorithm validated against air displacement plethysmography. Age- and sex-specific percentiles for BMI, fat mass index (FMI), fat-free mass index (FFMI), and a “load-capacity model” (characterized by the ratios of fat mass [FM]/ fatt-free mass [FFM] and FM/FFM2) were modeled using the LMS method. Results: BMI, FMI, FFMI, FM/FFM, and FM/FFM2 curves showed similar shapes between boys and girls with steady increases in BMI, FMI, and FFMI, while FM/FFM2-centiles decreased during early childhood and adolescence. Sex differences were observed in FMI and FM/FFM percentiles with increases in FMI up to age 9 years followed by a steady decrease in FM/FFM during and after puberty with a fast-growing FFMI up to age 17 in boys. The prevalence of low FFM relative to FM reached more than 60% in overweight children and adolescents. Conclusion: These pediatric body composition reference data enable physicians and public health scientists to monitor body composition during growth and development and to interpret individual data. The data point out to an early risk of sarcopenia in overweight children and adolescents.Isabel GätjensSteffen Christian Ekkehard SchmidtSandra Plachta-DanielzikAnja Bosy-WestphalManfred James MüllerKarger Publishersarticlebody compositionfat mass indexfat-free mass indexload-capacity modelchildrenNutrition. Foods and food supplyTX341-641Nutritional diseases. Deficiency diseasesRC620-627ENObesity Facts, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
body composition fat mass index fat-free mass index load-capacity model children Nutrition. Foods and food supply TX341-641 Nutritional diseases. Deficiency diseases RC620-627 |
spellingShingle |
body composition fat mass index fat-free mass index load-capacity model children Nutrition. Foods and food supply TX341-641 Nutritional diseases. Deficiency diseases RC620-627 Isabel Gätjens Steffen Christian Ekkehard Schmidt Sandra Plachta-Danielzik Anja Bosy-Westphal Manfred James Müller Body Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children |
description |
Introduction: Body composition assessment is superior to the use of body mass index (BMI) to characterize the nutritional status in pediatric populations. For data interpretation, suitable reference data are needed; hence, we aimed to generate age-dependent and sex-specific body composition reference data in a larger population of children and adolescents in Germany. Methods: This is a cross-sectional study on a representative group of 15,392 5- to 17-year-old children and adolescents. Body composition was assessed by bioelectrical impedance analysis using a population-specific algorithm validated against air displacement plethysmography. Age- and sex-specific percentiles for BMI, fat mass index (FMI), fat-free mass index (FFMI), and a “load-capacity model” (characterized by the ratios of fat mass [FM]/ fatt-free mass [FFM] and FM/FFM2) were modeled using the LMS method. Results: BMI, FMI, FFMI, FM/FFM, and FM/FFM2 curves showed similar shapes between boys and girls with steady increases in BMI, FMI, and FFMI, while FM/FFM2-centiles decreased during early childhood and adolescence. Sex differences were observed in FMI and FM/FFM percentiles with increases in FMI up to age 9 years followed by a steady decrease in FM/FFM during and after puberty with a fast-growing FFMI up to age 17 in boys. The prevalence of low FFM relative to FM reached more than 60% in overweight children and adolescents. Conclusion: These pediatric body composition reference data enable physicians and public health scientists to monitor body composition during growth and development and to interpret individual data. The data point out to an early risk of sarcopenia in overweight children and adolescents. |
format |
article |
author |
Isabel Gätjens Steffen Christian Ekkehard Schmidt Sandra Plachta-Danielzik Anja Bosy-Westphal Manfred James Müller |
author_facet |
Isabel Gätjens Steffen Christian Ekkehard Schmidt Sandra Plachta-Danielzik Anja Bosy-Westphal Manfred James Müller |
author_sort |
Isabel Gätjens |
title |
Body Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children |
title_short |
Body Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children |
title_full |
Body Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children |
title_fullStr |
Body Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children |
title_full_unstemmed |
Body Composition Characteristics of a Load-Capacity Model: Age-Dependent and Sex-Specific Percentiles in 5- to 17-Year-Old Children |
title_sort |
body composition characteristics of a load-capacity model: age-dependent and sex-specific percentiles in 5- to 17-year-old children |
publisher |
Karger Publishers |
publishDate |
2021 |
url |
https://doaj.org/article/b00f19124ca14ccabf74e9e7129ca61c |
work_keys_str_mv |
AT isabelgatjens bodycompositioncharacteristicsofaloadcapacitymodelagedependentandsexspecificpercentilesin5to17yearoldchildren AT steffenchristianekkehardschmidt bodycompositioncharacteristicsofaloadcapacitymodelagedependentandsexspecificpercentilesin5to17yearoldchildren AT sandraplachtadanielzik bodycompositioncharacteristicsofaloadcapacitymodelagedependentandsexspecificpercentilesin5to17yearoldchildren AT anjabosywestphal bodycompositioncharacteristicsofaloadcapacitymodelagedependentandsexspecificpercentilesin5to17yearoldchildren AT manfredjamesmuller bodycompositioncharacteristicsofaloadcapacitymodelagedependentandsexspecificpercentilesin5to17yearoldchildren |
_version_ |
1718444861953146880 |