A Two-Stage Multistep-Ahead Electricity Load Forecasting Scheme Based on LightGBM and Attention-BiLSTM
An efficient energy operation strategy for the smart grid requires accurate day-ahead electricity load forecasts with high time resolutions, such as 15 or 30 min. Most high-time resolution electricity load prediction techniques deal with a single output prediction, so their ability to cope with sudd...
Guardado en:
Autores principales: | Jinwoong Park, Eenjun Hwang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b03a3751ad664accbbf6df2df0e63098 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
BiLSTM-Attention: An Air Target Tactical Intention Recognition Model
por: Teng Fei, Liu Shu, Song Yafei
Publicado: (2021) -
Air Pollutant Concentration Prediction Based on a CEEMDAN-FE-BiLSTM Model
por: Xuchu Jiang, et al.
Publicado: (2021) -
Improving Accuracy using The ASERLU layer in CNN-BiLSTM Architecture on Sentiment Analysis
por: Sandi Hermawan, et al.
Publicado: (2021) -
Automatic Search of Cataclysmic Variables Based on LightGBM in LAMOST-DR7
por: Zhiyuan Hu, et al.
Publicado: (2021) -
Selection of Outline Descriptors Based on LightGBM with Application to Infrared Image Target Recognition
por: Xiaohong Hu, et al.
Publicado: (2021)