Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus
ObjectiveAccounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) aver...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b03c00234dd14fc58ffc2d2c11c52758 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b03c00234dd14fc58ffc2d2c11c52758 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b03c00234dd14fc58ffc2d2c11c527582021-12-01T02:04:11ZAccount for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus2234-943X10.3389/fonc.2021.734552https://doaj.org/article/b03c00234dd14fc58ffc2d2c11c527582021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fonc.2021.734552/fullhttps://doaj.org/toc/2234-943XObjectiveAccounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) scans to account for the full extent of esophagus motion during 4D imaging acquisition.Methods and MaterialsThe 3D and 4D CT scans of 20 lung cancer patients treated with conventional radiotherapy and 20 patients treated with stereotactic ablative radiation therapy (SBRT) were used. Radiation oncologists contoured the esophagus on the 3DCT, AVG, MIP and 25% exhale scans, and the combination of the esophagus in every phase of 4DCT. The union of all 4D phase delineations (U4D) represented the full extent of esophagus motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors.ResultsEsophagus delineations on the MIP were the closest to the full extent of motion, requiring only 6.9 mm margins. Delineations on the AVG and 3D scans required margins up to 7.97 and 7.90 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively.ConclusionDelineations on 3D, AVG, or MIP scans required extensions for representing the esophagus’s full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume (PRV) of the esophagus is required.Aihui FengHengle GuHua ChenYan ShaoHao WangYanhua DuanYing HuangTao ZhouZhiyong XuFrontiers Media S.A.article4DCTlung canceresophagus motiondosimetryinternal organ at risk volumeNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENFrontiers in Oncology, Vol 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
4DCT lung cancer esophagus motion dosimetry internal organ at risk volume Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 |
spellingShingle |
4DCT lung cancer esophagus motion dosimetry internal organ at risk volume Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 Aihui Feng Hengle Gu Hua Chen Yan Shao Hao Wang Yanhua Duan Ying Huang Tao Zhou Zhiyong Xu Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus |
description |
ObjectiveAccounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) scans to account for the full extent of esophagus motion during 4D imaging acquisition.Methods and MaterialsThe 3D and 4D CT scans of 20 lung cancer patients treated with conventional radiotherapy and 20 patients treated with stereotactic ablative radiation therapy (SBRT) were used. Radiation oncologists contoured the esophagus on the 3DCT, AVG, MIP and 25% exhale scans, and the combination of the esophagus in every phase of 4DCT. The union of all 4D phase delineations (U4D) represented the full extent of esophagus motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors.ResultsEsophagus delineations on the MIP were the closest to the full extent of motion, requiring only 6.9 mm margins. Delineations on the AVG and 3D scans required margins up to 7.97 and 7.90 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively.ConclusionDelineations on 3D, AVG, or MIP scans required extensions for representing the esophagus’s full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume (PRV) of the esophagus is required. |
format |
article |
author |
Aihui Feng Hengle Gu Hua Chen Yan Shao Hao Wang Yanhua Duan Ying Huang Tao Zhou Zhiyong Xu |
author_facet |
Aihui Feng Hengle Gu Hua Chen Yan Shao Hao Wang Yanhua Duan Ying Huang Tao Zhou Zhiyong Xu |
author_sort |
Aihui Feng |
title |
Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus |
title_short |
Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus |
title_full |
Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus |
title_fullStr |
Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus |
title_full_unstemmed |
Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus |
title_sort |
account for the full extent of esophagus motion in radiation therapy planning: a preliminary study of the irv of the esophagus |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/b03c00234dd14fc58ffc2d2c11c52758 |
work_keys_str_mv |
AT aihuifeng accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT henglegu accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT huachen accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT yanshao accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT haowang accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT yanhuaduan accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT yinghuang accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT taozhou accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus AT zhiyongxu accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus |
_version_ |
1718405922003353600 |