Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus

ObjectiveAccounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) aver...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aihui Feng, Hengle Gu, Hua Chen, Yan Shao, Hao Wang, Yanhua Duan, Ying Huang, Tao Zhou, Zhiyong Xu
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/b03c00234dd14fc58ffc2d2c11c52758
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b03c00234dd14fc58ffc2d2c11c52758
record_format dspace
spelling oai:doaj.org-article:b03c00234dd14fc58ffc2d2c11c527582021-12-01T02:04:11ZAccount for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus2234-943X10.3389/fonc.2021.734552https://doaj.org/article/b03c00234dd14fc58ffc2d2c11c527582021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fonc.2021.734552/fullhttps://doaj.org/toc/2234-943XObjectiveAccounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) scans to account for the full extent of esophagus motion during 4D imaging acquisition.Methods and MaterialsThe 3D and 4D CT scans of 20 lung cancer patients treated with conventional radiotherapy and 20 patients treated with stereotactic ablative radiation therapy (SBRT) were used. Radiation oncologists contoured the esophagus on the 3DCT, AVG, MIP and 25% exhale scans, and the combination of the esophagus in every phase of 4DCT. The union of all 4D phase delineations (U4D) represented the full extent of esophagus motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors.ResultsEsophagus delineations on the MIP were the closest to the full extent of motion, requiring only 6.9 mm margins. Delineations on the AVG and 3D scans required margins up to 7.97 and 7.90 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively.ConclusionDelineations on 3D, AVG, or MIP scans required extensions for representing the esophagus’s full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume (PRV) of the esophagus is required.Aihui FengHengle GuHua ChenYan ShaoHao WangYanhua DuanYing HuangTao ZhouZhiyong XuFrontiers Media S.A.article4DCTlung canceresophagus motiondosimetryinternal organ at risk volumeNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENFrontiers in Oncology, Vol 11 (2021)
institution DOAJ
collection DOAJ
language EN
topic 4DCT
lung cancer
esophagus motion
dosimetry
internal organ at risk volume
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
spellingShingle 4DCT
lung cancer
esophagus motion
dosimetry
internal organ at risk volume
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Aihui Feng
Hengle Gu
Hua Chen
Yan Shao
Hao Wang
Yanhua Duan
Ying Huang
Tao Zhou
Zhiyong Xu
Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus
description ObjectiveAccounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) scans to account for the full extent of esophagus motion during 4D imaging acquisition.Methods and MaterialsThe 3D and 4D CT scans of 20 lung cancer patients treated with conventional radiotherapy and 20 patients treated with stereotactic ablative radiation therapy (SBRT) were used. Radiation oncologists contoured the esophagus on the 3DCT, AVG, MIP and 25% exhale scans, and the combination of the esophagus in every phase of 4DCT. The union of all 4D phase delineations (U4D) represented the full extent of esophagus motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors.ResultsEsophagus delineations on the MIP were the closest to the full extent of motion, requiring only 6.9 mm margins. Delineations on the AVG and 3D scans required margins up to 7.97 and 7.90 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively.ConclusionDelineations on 3D, AVG, or MIP scans required extensions for representing the esophagus’s full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume (PRV) of the esophagus is required.
format article
author Aihui Feng
Hengle Gu
Hua Chen
Yan Shao
Hao Wang
Yanhua Duan
Ying Huang
Tao Zhou
Zhiyong Xu
author_facet Aihui Feng
Hengle Gu
Hua Chen
Yan Shao
Hao Wang
Yanhua Duan
Ying Huang
Tao Zhou
Zhiyong Xu
author_sort Aihui Feng
title Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus
title_short Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus
title_full Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus
title_fullStr Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus
title_full_unstemmed Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus
title_sort account for the full extent of esophagus motion in radiation therapy planning: a preliminary study of the irv of the esophagus
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/b03c00234dd14fc58ffc2d2c11c52758
work_keys_str_mv AT aihuifeng accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT henglegu accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT huachen accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT yanshao accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT haowang accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT yanhuaduan accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT yinghuang accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT taozhou accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
AT zhiyongxu accountforthefullextentofesophagusmotioninradiationtherapyplanningapreliminarystudyoftheirvoftheesophagus
_version_ 1718405922003353600