Analysis of a Tuberculosis Infection Model considering the Influence of Saturated Recovery (Treatment)

Tuberculosis (TB) is a serious global health threat that is caused by the bacterium Mycobacterium tuberculosis, is extremely infectious, and has a high mortality rate. In this paper, we developed a model of TB infection to predict the impact of saturated recovery. The existence of equilibrium and it...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fatima Sulayman, Farah Aini Abdullah
Formato: article
Lenguaje:EN
Publicado: Hindawi-Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/b04091ea7ba2482793f138a47cf3af03
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Tuberculosis (TB) is a serious global health threat that is caused by the bacterium Mycobacterium tuberculosis, is extremely infectious, and has a high mortality rate. In this paper, we developed a model of TB infection to predict the impact of saturated recovery. The existence of equilibrium and its stability has been investigated based on the effective reproduction number RC. The model displays interesting dynamics, including backward bifurcation and Hopf bifurcation, which further results in the stable disease-free and stable endemic equilibria to be coexisting. Bifurcation analysis demonstrates that the saturation parameter is accountable for the phenomenon of backward bifurcation. We derive a condition that guarantees that the model is globally asymptotically stable using the Lyapunov function approach to global stability. The numerical simulation also reveals that the extent of saturation of TB infection is the mechanism that is fuelling TB disease in the population.