Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter
The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory’s parameter, <in...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b042371c837b48ed93ca04533d26ddc0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory’s parameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo><mi>ϵ</mi><mo>|</mo></mrow><mo>≲</mo><mn>5</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup><mspace width="4.pt"></mspace><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature. |
---|