Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces
In this paper, we introduce a new algorithm for solving pseudomonotone variational inequalities with a Lipschitz-type condition in a real Hilbert space. The algorithm is constructed around two algorithms: the subgradient extragradient algorithm and the inertial algorithm. The proposed algorithm uses...
Enregistré dans:
| Auteurs principaux: | Wairojjana Nopparat, Pakkaranang Nuttapol, Pholasa Nattawut |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
De Gruyter
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/b043747aed5749e58eaac5136b309188 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Two strongly convergent self-adaptive iterative schemes for solving pseudo-monotone equilibrium problems with applications
par: Pakkaranang Nuttapol, et autres
Publié: (2021) -
Generalized split null point of sum of monotone operators in Hilbert spaces
par: Mebawondu Akindele A., et autres
Publié: (2021) -
A new iteration method for the solution of third-order BVP via Green's function
par: Akgun Fatma Aydın, et autres
Publié: (2021) -
A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
par: Lateef Olakunle Jolaoso, et autres
Publié: (2020) -
Spectrum and Analytic Functional Calculus for Clifford Operators via Stem Functions
par: Vasilescu Florian-Horia
Publié: (2021)