Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces
In this paper, we introduce a new algorithm for solving pseudomonotone variational inequalities with a Lipschitz-type condition in a real Hilbert space. The algorithm is constructed around two algorithms: the subgradient extragradient algorithm and the inertial algorithm. The proposed algorithm uses...
Guardado en:
Autores principales: | Wairojjana Nopparat, Pakkaranang Nuttapol, Pholasa Nattawut |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b043747aed5749e58eaac5136b309188 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Two strongly convergent self-adaptive iterative schemes for solving pseudo-monotone equilibrium problems with applications
por: Pakkaranang Nuttapol, et al.
Publicado: (2021) -
Generalized split null point of sum of monotone operators in Hilbert spaces
por: Mebawondu Akindele A., et al.
Publicado: (2021) -
A new iteration method for the solution of third-order BVP via Green's function
por: Akgun Fatma Aydın, et al.
Publicado: (2021) -
A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
por: Lateef Olakunle Jolaoso, et al.
Publicado: (2020) -
Spectrum and Analytic Functional Calculus for Clifford Operators via Stem Functions
por: Vasilescu Florian-Horia
Publicado: (2021)