Cost-Optimized Microgrid Coalitions Using Bayesian Reinforcement Learning
Microgrids are empowered by the advances in renewable energy generation, which enable the microgrids to generate the required energy for supplying their loads and trade the surplus energy to other microgrids or the macrogrid. Microgrids need to optimize the scheduling of their demands and energy lev...
Enregistré dans:
Auteurs principaux: | Mohammad Sadeghi, Shahram Mollahasani, Melike Erol-Kantarci |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b05a42816f72405c912ee02346bf27d0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review
par: Mudhafar Al-Saadi, et autres
Publié: (2021) -
Deep Reinforcement Learning for Autonomous Water Heater Control
par: Kadir Amasyali, et autres
Publié: (2021) -
Centralized Microgrid Control System in Compliance with IEEE 2030.7 Standard Based on an Advanced Field Unit
par: Soheil Pouraltafi-kheljan, et autres
Publié: (2021) -
Reinforcement Learning Approaches to Optimal Market Making
par: Bruno Gašperov, et autres
Publié: (2021) -
Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management
par: Qasem Abu Al-Haija, et autres
Publié: (2021)