Cost-Optimized Microgrid Coalitions Using Bayesian Reinforcement Learning
Microgrids are empowered by the advances in renewable energy generation, which enable the microgrids to generate the required energy for supplying their loads and trade the surplus energy to other microgrids or the macrogrid. Microgrids need to optimize the scheduling of their demands and energy lev...
Guardado en:
Autores principales: | Mohammad Sadeghi, Shahram Mollahasani, Melike Erol-Kantarci |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b05a42816f72405c912ee02346bf27d0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review
por: Mudhafar Al-Saadi, et al.
Publicado: (2021) -
Deep Reinforcement Learning for Autonomous Water Heater Control
por: Kadir Amasyali, et al.
Publicado: (2021) -
Centralized Microgrid Control System in Compliance with IEEE 2030.7 Standard Based on an Advanced Field Unit
por: Soheil Pouraltafi-kheljan, et al.
Publicado: (2021) -
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management
por: Qasem Abu Al-Haija, et al.
Publicado: (2021)