Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.

Diagenetic distortion can be a major obstacle to collecting quantitative shape data on paleontological specimens, especially for three-dimensional geometric morphometric analysis. Here we utilize the recently-published algorithmic symmetrization method of fossil reconstruction and compare it to the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Melissa Tallman, Nina Amenta, Eric Delson, Stephen R Frost, Deboshmita Ghosh, Zachary S Klukkert, Andrea Morrow, Gary J Sawyer
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b05e533ba38a42cc82395f54782387a3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b05e533ba38a42cc82395f54782387a3
record_format dspace
spelling oai:doaj.org-article:b05e533ba38a42cc82395f54782387a32021-11-25T06:09:41ZEvaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.1932-620310.1371/journal.pone.0100833https://doaj.org/article/b05e533ba38a42cc82395f54782387a32014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24992483/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Diagenetic distortion can be a major obstacle to collecting quantitative shape data on paleontological specimens, especially for three-dimensional geometric morphometric analysis. Here we utilize the recently-published algorithmic symmetrization method of fossil reconstruction and compare it to the more traditional reflection & averaging approach. In order to have an objective test of this method, five casts of a female cranium of Papio hamadryas kindae were manually deformed while the plaster hardened. These were subsequently "retrodeformed" using both algorithmic symmetrization and reflection & averaging and then compared to the original, undeformed specimen. We found that in all cases, algorithmic retrodeformation improved the shape of the deformed cranium and in four out of five cases, the algorithmically symmetrized crania were more similar in shape to the original crania than the reflected & averaged reconstructions. In three out of five cases, the difference between the algorithmically symmetrized crania and the original cranium could be contained within the magnitude of variation among individuals in a single subspecies of Papio. Instances of asymmetric distortion, such as breakage on one side, or bending in the axis of symmetry, were well handled, whereas symmetrical distortion remained uncorrected. This technique was further tested on a naturally deformed and fossilized cranium of Paradolichopithecus arvernensis. Results, based on a principal components analysis and Procrustes distances, showed that the algorithmically symmetrized Paradolichopithecus cranium was more similar to other, less-deformed crania from the same species than was the original. These results illustrate the efficacy of this method of retrodeformation by algorithmic symmetrization for the correction of asymmetrical distortion in fossils. Symmetrical distortion remains a problem for all currently developed methods of retrodeformation.Melissa TallmanNina AmentaEric DelsonStephen R FrostDeboshmita GhoshZachary S KlukkertAndrea MorrowGary J SawyerPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 7, p e100833 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Melissa Tallman
Nina Amenta
Eric Delson
Stephen R Frost
Deboshmita Ghosh
Zachary S Klukkert
Andrea Morrow
Gary J Sawyer
Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.
description Diagenetic distortion can be a major obstacle to collecting quantitative shape data on paleontological specimens, especially for three-dimensional geometric morphometric analysis. Here we utilize the recently-published algorithmic symmetrization method of fossil reconstruction and compare it to the more traditional reflection & averaging approach. In order to have an objective test of this method, five casts of a female cranium of Papio hamadryas kindae were manually deformed while the plaster hardened. These were subsequently "retrodeformed" using both algorithmic symmetrization and reflection & averaging and then compared to the original, undeformed specimen. We found that in all cases, algorithmic retrodeformation improved the shape of the deformed cranium and in four out of five cases, the algorithmically symmetrized crania were more similar in shape to the original crania than the reflected & averaged reconstructions. In three out of five cases, the difference between the algorithmically symmetrized crania and the original cranium could be contained within the magnitude of variation among individuals in a single subspecies of Papio. Instances of asymmetric distortion, such as breakage on one side, or bending in the axis of symmetry, were well handled, whereas symmetrical distortion remained uncorrected. This technique was further tested on a naturally deformed and fossilized cranium of Paradolichopithecus arvernensis. Results, based on a principal components analysis and Procrustes distances, showed that the algorithmically symmetrized Paradolichopithecus cranium was more similar to other, less-deformed crania from the same species than was the original. These results illustrate the efficacy of this method of retrodeformation by algorithmic symmetrization for the correction of asymmetrical distortion in fossils. Symmetrical distortion remains a problem for all currently developed methods of retrodeformation.
format article
author Melissa Tallman
Nina Amenta
Eric Delson
Stephen R Frost
Deboshmita Ghosh
Zachary S Klukkert
Andrea Morrow
Gary J Sawyer
author_facet Melissa Tallman
Nina Amenta
Eric Delson
Stephen R Frost
Deboshmita Ghosh
Zachary S Klukkert
Andrea Morrow
Gary J Sawyer
author_sort Melissa Tallman
title Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.
title_short Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.
title_full Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.
title_fullStr Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.
title_full_unstemmed Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates, Cercopithecidae) as a test case.
title_sort evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (primates, cercopithecidae) as a test case.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/b05e533ba38a42cc82395f54782387a3
work_keys_str_mv AT melissatallman evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
AT ninaamenta evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
AT ericdelson evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
AT stephenrfrost evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
AT deboshmitaghosh evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
AT zacharysklukkert evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
AT andreamorrow evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
AT garyjsawyer evaluationofanewmethodoffossilretrodeformationbyalgorithmicsymmetrizationcraniaofpapioninsprimatescercopithecidaeasatestcase
_version_ 1718414124441927680