Automatic detect lung node with deep learning in segmentation and imbalance data labeling
Abstract In this study, a novel method with the U-Net-based network architecture, 2D U-Net, is employed to segment the position of lung nodules, which are an early symptom of lung cancer and have a high probability of becoming a carcinoma, especially when a lung nodule is bigger than 15 $$\mathrm{m...
Enregistré dans:
Auteurs principaux: | Ting-Wei Chiu, Yu-Lin Tsai, Shun-Feng Su |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b06b32aa28454d3185a755c627a8e2e6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automatic Multi-Label ECG Classification with Category Imbalance and Cost-Sensitive Thresholding
par: Yang Liu, et autres
Publié: (2021) -
Annotation-efficient deep learning for automatic medical image segmentation
par: Shanshan Wang, et autres
Publié: (2021) -
Automatic segmentation with detection of local segmentation failures in cardiac MRI
par: Jörg Sander, et autres
Publié: (2020) -
Automatic segmentation tool for 3D digital rocks by deep learning
par: Johan Phan, et autres
Publié: (2021) -
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
par: Jieming Li, et autres
Publié: (2020)