Current status and perspectives in atomic force microscopy-based identification of cellular transformation
Chenbo Dong, Xiao Hu, Cerasela Zoica Dinu Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA Abstract: Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, a...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Dove Medical Press
2016
|
Subjects: | |
Online Access: | https://doaj.org/article/b0721efc025f4c77900dc0adb3035ffc |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chenbo Dong, Xiao Hu, Cerasela Zoica Dinu Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA Abstract: Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, as well as how the transforming potential of a tissue from a benign to a cancerous one is related to the dynamics of both the cell and its surroundings, holds promise for the development of targeted translational therapies. This review provides a comprehensive overview of atomic force microscopy-based technology and its applications for identification of cellular progression to a cancerous phenotype. The review also offers insights into the advancements that are required for the next user-controlled tool to allow for the identification of early cell transformation and thus potentially lead to improved therapeutic outcomes. Keywords: atomic force microscopy (AFM), nanoindentation, malignant transformation, cancerous phenotype, bio-nano-mechanical signature |
---|