CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca

Abstract Root parasitic weeds infect numerous economically important crops, affecting total yield quantity and quality. A lack of an efficient control method limits our ability to manage newly developing and more virulent races of root parasitic weeds. To control the parasite induced damage in most...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vinay Kumar Bari, Jackline Abu Nassar, Radi Aly
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b07ac23ab4844c80af29c0120f484842
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Root parasitic weeds infect numerous economically important crops, affecting total yield quantity and quality. A lack of an efficient control method limits our ability to manage newly developing and more virulent races of root parasitic weeds. To control the parasite induced damage in most host crops, an innovative biotechnological approach is urgently required. Strigolactones (SLs) are plant hormones derived from carotenoids via a pathway involving the Carotenoid Cleavage Dioxygenase (CCD) 7, CCD8 and More Axillary Growth 1 (MAX1) genes. SLs act as branching inhibitory hormones and strictly required for the germination of root parasitic weeds. Here, we demonstrate that CRISPR/Cas9-mediated targted editing of SL biosynthetic gene MAX1, in tomato confers resistance against root parasitic weed Phelipanche aegyptiaca. We designed sgRNA to target the third exon of MAX1 in tomato plants using the CRISPR/Cas9 system. The T0 plants were edited very efficiently at the MAX1 target site without any non-specific off-target effects. Genotype analysis of T1 plants revealed that the introduced mutations were stably passed on to the next generation. Notably, MAX1-Cas9 heterozygous and homozygous T1 plants had similar morphological changes that include excessive growth of axillary bud, reduced plant height and adventitious root formation relative to wild type. Our results demonstrated that, MAX1-Cas9 mutant lines exhibit resistance against root parasitic weed P. aegyptiaca due to reduced SL (orobanchol) level. Moreover, the expression of carotenoid biosynthetic pathway gene PDS1 and total carotenoid level was altered, as compared to wild type plants. Taking into consideration, the impact of root parasitic weeds on the agricultural economy and the obstacle to prevent and eradicate them, the current study provides new aspects into the development of an efficient control method that could be used to avoid germination of root parasitic weeds.