Human and Scene Motion Deblurring Using Pseudo-Blur Synthesizer
Present-day deep learning-based motion deblurring methods utilize the pair of synthetic blur and sharp data to regress any particular framework. This task is designed for directly translating a blurry image input into its restored version as output. The aforementioned approach relies heavily on the...
Guardado en:
Autores principales: | Jonathan Samuel Lumentut, In Kyu Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b08426708d494ac8ad7d90c8516b91c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A New Full-Reference Image Quality Metric for Motion Blur Profile Characterization
por: Mohammad Abdullah-Al-Mamun, et al.
Publicado: (2021) -
Concurrent Video Denoising and Deblurring for Dynamic Scenes
por: Efklidis Katsaros, et al.
Publicado: (2021) -
Motion optimization for first-aid chest compression based on kinematic, dynamic and temporal redundancy
por: Masafumi OKADA, et al.
Publicado: (2016) -
Hybrid Deblur Net: Deep Non-Uniform Deblurring With Event Camera
por: Limeng Zhang, et al.
Publicado: (2020) -
High Inclusiveness and Accuracy Motion Blur Real-Time Gesture Recognition Based on YOLOv4 Model Combined Attention Mechanism and DeblurGanv2
por: Hongchao Zhuang, et al.
Publicado: (2021)