Human and Scene Motion Deblurring Using Pseudo-Blur Synthesizer
Present-day deep learning-based motion deblurring methods utilize the pair of synthetic blur and sharp data to regress any particular framework. This task is designed for directly translating a blurry image input into its restored version as output. The aforementioned approach relies heavily on the...
Enregistré dans:
Auteurs principaux: | Jonathan Samuel Lumentut, In Kyu Park |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b08426708d494ac8ad7d90c8516b91c3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A New Full-Reference Image Quality Metric for Motion Blur Profile Characterization
par: Mohammad Abdullah-Al-Mamun, et autres
Publié: (2021) -
Concurrent Video Denoising and Deblurring for Dynamic Scenes
par: Efklidis Katsaros, et autres
Publié: (2021) -
Motion optimization for first-aid chest compression based on kinematic, dynamic and temporal redundancy
par: Masafumi OKADA, et autres
Publié: (2016) -
Hybrid Deblur Net: Deep Non-Uniform Deblurring With Event Camera
par: Limeng Zhang, et autres
Publié: (2020) -
High Inclusiveness and Accuracy Motion Blur Real-Time Gesture Recognition Based on YOLOv4 Model Combined Attention Mechanism and DeblurGanv2
par: Hongchao Zhuang, et autres
Publié: (2021)