Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
This study focuses on reconstructing accurate meshes with high-resolution textures from single images. The reconstruction process involves two networks: a mesh-reconstruction network and a texture-reconstruction network. The mesh-reconstruction network estimates a deformation map, which is used to d...
Guardado en:
Autores principales: | Mingyun Wen, Jisun Park, Kyungeun Cho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b08f0012ca384ebdb65dcb0499bc9160 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Low-Light Image Enhancement Based on Generative Adversarial Network
por: Nandhini Abirami R., et al.
Publicado: (2021) -
Enhancement of Multi-Class Structural Defect Recognition Using Generative Adversarial Network
por: Hyunkyu Shin, et al.
Publicado: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021)