Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys
Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main ste...
Enregistré dans:
Auteurs principaux: | Omid Khalaj, Moslem Ghobadi, Ehsan Saebnoori, Alireza Zarezadeh, Mohammadreza Shishesaz, Bohuslav Mašek, Ctibor Štadler, Jiří Svoboda |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b0a1633d0b4c4ec6938a6845154e3dba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hybrid Machine Learning Techniques and Computational Mechanics: Estimating the Dynamic Behavior of Oxide Precipitation Hardened Steel
par: Omid Khalaj, et autres
Publié: (2021) -
An Efficient Approach With Application of Linear and Nonlinear Models for Evaluation of Power Transformer Health Index
par: Hamed Zeinoddini-Meymand, et autres
Publié: (2021) -
Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results
par: Kenichi Ishihara, et autres
Publié: (2021) -
Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe
par: Masayuki KAMAYA
Publié: (2016) -
XFEM Simulation of Tensile and Fracture Behavior of Ultrafine-Grained Al 6061 Alloy
par: Saurabh Gairola, et autres
Publié: (2021)