Melanocyte progenitor cells reside in human subcutaneous adipose tissue.

Based on the assumption that some progenitor cells in an organ might reside in neighboring adipose tissue, we investigated whether melanocyte progenitor cells reside in human subcutaneous adipose tissue. First, we examined the expression of human melanoma black 45 (HMB45) and microphthalmia-associat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuri Ikeda, Akino Wada, Toshio Hasegawa, Mutsumi Yokota, Masato Koike, Shigaku Ikeda
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b0d46761328c4aab8a4f6b97e9d6d7ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b0d46761328c4aab8a4f6b97e9d6d7ff
record_format dspace
spelling oai:doaj.org-article:b0d46761328c4aab8a4f6b97e9d6d7ff2021-12-02T20:19:35ZMelanocyte progenitor cells reside in human subcutaneous adipose tissue.1932-620310.1371/journal.pone.0256622https://doaj.org/article/b0d46761328c4aab8a4f6b97e9d6d7ff2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0256622https://doaj.org/toc/1932-6203Based on the assumption that some progenitor cells in an organ might reside in neighboring adipose tissue, we investigated whether melanocyte progenitor cells reside in human subcutaneous adipose tissue. First, we examined the expression of human melanoma black 45 (HMB45) and microphthalmia-associated transcription factor (MITF) in undifferentiated adipose-derived stem cells (ADSCs) by immunostaining, RT-PCR, and western blotting. These two markers were detected in undifferentiated ADSCs, and their expression levels were increased in differentiated ADSCs in melanocyte-specific culture medium. Other melanocytic markers (Melan A, MATP, Mel2, Mel EM, tyrosinase, KIT, and PAX3) were also detected at variable levels in undifferentiated ADSCs, and the expression of some markers was increased during differentiation into the melanocyte lineage. We further showed that ADSCs differentiated in melanocyte-specific culture medium localized in the basal layer and expressed tyrosinase and HMB45 in a 3D epidermal culture system. Melanin deposits were also induced by ultraviolet-light-B (UVB) irradiation. These results demonstrate that melanocyte progenitor cells reside in human subcutaneous adipose tissue and that these cells might have the potential to differentiate into mature melanocytes. Melanocyte and keratinocyte progenitors residing in human subcutaneous tissue can be used for the treatment of skin diseases and skin rejuvenation in the future.Yuri IkedaAkino WadaToshio HasegawaMutsumi YokotaMasato KoikeShigaku IkedaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0256622 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yuri Ikeda
Akino Wada
Toshio Hasegawa
Mutsumi Yokota
Masato Koike
Shigaku Ikeda
Melanocyte progenitor cells reside in human subcutaneous adipose tissue.
description Based on the assumption that some progenitor cells in an organ might reside in neighboring adipose tissue, we investigated whether melanocyte progenitor cells reside in human subcutaneous adipose tissue. First, we examined the expression of human melanoma black 45 (HMB45) and microphthalmia-associated transcription factor (MITF) in undifferentiated adipose-derived stem cells (ADSCs) by immunostaining, RT-PCR, and western blotting. These two markers were detected in undifferentiated ADSCs, and their expression levels were increased in differentiated ADSCs in melanocyte-specific culture medium. Other melanocytic markers (Melan A, MATP, Mel2, Mel EM, tyrosinase, KIT, and PAX3) were also detected at variable levels in undifferentiated ADSCs, and the expression of some markers was increased during differentiation into the melanocyte lineage. We further showed that ADSCs differentiated in melanocyte-specific culture medium localized in the basal layer and expressed tyrosinase and HMB45 in a 3D epidermal culture system. Melanin deposits were also induced by ultraviolet-light-B (UVB) irradiation. These results demonstrate that melanocyte progenitor cells reside in human subcutaneous adipose tissue and that these cells might have the potential to differentiate into mature melanocytes. Melanocyte and keratinocyte progenitors residing in human subcutaneous tissue can be used for the treatment of skin diseases and skin rejuvenation in the future.
format article
author Yuri Ikeda
Akino Wada
Toshio Hasegawa
Mutsumi Yokota
Masato Koike
Shigaku Ikeda
author_facet Yuri Ikeda
Akino Wada
Toshio Hasegawa
Mutsumi Yokota
Masato Koike
Shigaku Ikeda
author_sort Yuri Ikeda
title Melanocyte progenitor cells reside in human subcutaneous adipose tissue.
title_short Melanocyte progenitor cells reside in human subcutaneous adipose tissue.
title_full Melanocyte progenitor cells reside in human subcutaneous adipose tissue.
title_fullStr Melanocyte progenitor cells reside in human subcutaneous adipose tissue.
title_full_unstemmed Melanocyte progenitor cells reside in human subcutaneous adipose tissue.
title_sort melanocyte progenitor cells reside in human subcutaneous adipose tissue.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/b0d46761328c4aab8a4f6b97e9d6d7ff
work_keys_str_mv AT yuriikeda melanocyteprogenitorcellsresideinhumansubcutaneousadiposetissue
AT akinowada melanocyteprogenitorcellsresideinhumansubcutaneousadiposetissue
AT toshiohasegawa melanocyteprogenitorcellsresideinhumansubcutaneousadiposetissue
AT mutsumiyokota melanocyteprogenitorcellsresideinhumansubcutaneousadiposetissue
AT masatokoike melanocyteprogenitorcellsresideinhumansubcutaneousadiposetissue
AT shigakuikeda melanocyteprogenitorcellsresideinhumansubcutaneousadiposetissue
_version_ 1718374185588228096