Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer

Abstract While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2 +) breast cancer, HER2 + patients do not always respond to therapy. We present the results of utilizing a biophysical mathematical model to predict tumor response for two HER2 + breast cancer patients...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Angela M. Jarrett, David A. Hormuth, Vikram Adhikarla, Prativa Sahoo, Daniel Abler, Lusine Tumyan, Daniel Schmolze, Joanne Mortimer, Russell C. Rockne, Thomas E. Yankeelov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b0d9d0ed140743fbab8a82a362ac28df
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b0d9d0ed140743fbab8a82a362ac28df
record_format dspace
spelling oai:doaj.org-article:b0d9d0ed140743fbab8a82a362ac28df2021-12-02T11:41:18ZTowards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer10.1038/s41598-020-77397-02045-2322https://doaj.org/article/b0d9d0ed140743fbab8a82a362ac28df2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-77397-0https://doaj.org/toc/2045-2322Abstract While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2 +) breast cancer, HER2 + patients do not always respond to therapy. We present the results of utilizing a biophysical mathematical model to predict tumor response for two HER2 + breast cancer patients treated with the same therapeutic regimen but who achieved different treatment outcomes. Quantitative data from magnetic resonance imaging (MRI) and 64Cu-DOTA-trastuzumab positron emission tomography (PET) are used to estimate tumor density, perfusion, and distribution of HER2-targeted antibodies for each individual patient. MRI and PET data are collected prior to therapy, and follow-up MRI scans are acquired at a midpoint in therapy. Given these data types, we align the data sets to a common image space to enable model calibration. Once the model is parameterized with these data, we forecast treatment response with and without HER2-targeted therapy. By incorporating targeted therapy into the model, the resulting predictions are able to distinguish between the two different patient responses, increasing the difference in tumor volume change between the two patients by > 40%. This work provides a proof-of-concept strategy for processing and integrating PET and MRI modalities into a predictive, clinical-mathematical framework to provide patient-specific predictions of HER2 + treatment response.Angela M. JarrettDavid A. HormuthVikram AdhikarlaPrativa SahooDaniel AblerLusine TumyanDaniel SchmolzeJoanne MortimerRussell C. RockneThomas E. YankeelovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Angela M. Jarrett
David A. Hormuth
Vikram Adhikarla
Prativa Sahoo
Daniel Abler
Lusine Tumyan
Daniel Schmolze
Joanne Mortimer
Russell C. Rockne
Thomas E. Yankeelov
Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer
description Abstract While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2 +) breast cancer, HER2 + patients do not always respond to therapy. We present the results of utilizing a biophysical mathematical model to predict tumor response for two HER2 + breast cancer patients treated with the same therapeutic regimen but who achieved different treatment outcomes. Quantitative data from magnetic resonance imaging (MRI) and 64Cu-DOTA-trastuzumab positron emission tomography (PET) are used to estimate tumor density, perfusion, and distribution of HER2-targeted antibodies for each individual patient. MRI and PET data are collected prior to therapy, and follow-up MRI scans are acquired at a midpoint in therapy. Given these data types, we align the data sets to a common image space to enable model calibration. Once the model is parameterized with these data, we forecast treatment response with and without HER2-targeted therapy. By incorporating targeted therapy into the model, the resulting predictions are able to distinguish between the two different patient responses, increasing the difference in tumor volume change between the two patients by > 40%. This work provides a proof-of-concept strategy for processing and integrating PET and MRI modalities into a predictive, clinical-mathematical framework to provide patient-specific predictions of HER2 + treatment response.
format article
author Angela M. Jarrett
David A. Hormuth
Vikram Adhikarla
Prativa Sahoo
Daniel Abler
Lusine Tumyan
Daniel Schmolze
Joanne Mortimer
Russell C. Rockne
Thomas E. Yankeelov
author_facet Angela M. Jarrett
David A. Hormuth
Vikram Adhikarla
Prativa Sahoo
Daniel Abler
Lusine Tumyan
Daniel Schmolze
Joanne Mortimer
Russell C. Rockne
Thomas E. Yankeelov
author_sort Angela M. Jarrett
title Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer
title_short Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer
title_full Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer
title_fullStr Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer
title_full_unstemmed Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer
title_sort towards integration of 64cu-dota-trastuzumab pet-ct and mri with mathematical modeling to predict response to neoadjuvant therapy in her2 + breast cancer
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/b0d9d0ed140743fbab8a82a362ac28df
work_keys_str_mv AT angelamjarrett towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT davidahormuth towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT vikramadhikarla towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT prativasahoo towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT danielabler towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT lusinetumyan towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT danielschmolze towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT joannemortimer towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT russellcrockne towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
AT thomaseyankeelov towardsintegrationof64cudotatrastuzumabpetctandmriwithmathematicalmodelingtopredictresponsetoneoadjuvanttherapyinher2breastcancer
_version_ 1718395419941142528