Predicting structural material degradation in advanced nuclear reactors with ion irradiation
Abstract Swelling associated with the formation and growth of cavities is among the most damaging of radiation-induced degradation modes for structural materials in advanced nuclear reactor concepts. Ion irradiation has emerged as the only practical option to rapidly assess swelling in candidate mat...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b0dac1afc95c4188802f6be71d69079c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b0dac1afc95c4188802f6be71d69079c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b0dac1afc95c4188802f6be71d69079c2021-12-02T14:06:49ZPredicting structural material degradation in advanced nuclear reactors with ion irradiation10.1038/s41598-021-82512-w2045-2322https://doaj.org/article/b0dac1afc95c4188802f6be71d69079c2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82512-whttps://doaj.org/toc/2045-2322Abstract Swelling associated with the formation and growth of cavities is among the most damaging of radiation-induced degradation modes for structural materials in advanced nuclear reactor concepts. Ion irradiation has emerged as the only practical option to rapidly assess swelling in candidate materials. For decades, researchers have tried to simulate the harsh environment in a nuclear reactor in the laboratory at an accelerated rate. Here we present the first case in which swelling in a candidate alloy irradiated ~ 2 years in a nuclear reactor was replicated using dual ion irradiation in ~ 1 day with precise control over damage rate, helium injection rate, and temperature and utilize physical models to predict the effects of radiation in reactors. The capability to predict and replicate the complex processes surrounding cavity nucleation and growth across many decades of radiation dose rate highlights the potential of accelerated radiation damage experiments. More importantly, it demonstrates the capability to predict the swelling evolution and the possibility to predict other features of the irradiated microstructure evolution that control material property degradation required to accelerate the development of new, radiation-tolerant materials.Stephen TallerGerrit VanCoeveringBrian D. WirthGary S. WasNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Stephen Taller Gerrit VanCoevering Brian D. Wirth Gary S. Was Predicting structural material degradation in advanced nuclear reactors with ion irradiation |
description |
Abstract Swelling associated with the formation and growth of cavities is among the most damaging of radiation-induced degradation modes for structural materials in advanced nuclear reactor concepts. Ion irradiation has emerged as the only practical option to rapidly assess swelling in candidate materials. For decades, researchers have tried to simulate the harsh environment in a nuclear reactor in the laboratory at an accelerated rate. Here we present the first case in which swelling in a candidate alloy irradiated ~ 2 years in a nuclear reactor was replicated using dual ion irradiation in ~ 1 day with precise control over damage rate, helium injection rate, and temperature and utilize physical models to predict the effects of radiation in reactors. The capability to predict and replicate the complex processes surrounding cavity nucleation and growth across many decades of radiation dose rate highlights the potential of accelerated radiation damage experiments. More importantly, it demonstrates the capability to predict the swelling evolution and the possibility to predict other features of the irradiated microstructure evolution that control material property degradation required to accelerate the development of new, radiation-tolerant materials. |
format |
article |
author |
Stephen Taller Gerrit VanCoevering Brian D. Wirth Gary S. Was |
author_facet |
Stephen Taller Gerrit VanCoevering Brian D. Wirth Gary S. Was |
author_sort |
Stephen Taller |
title |
Predicting structural material degradation in advanced nuclear reactors with ion irradiation |
title_short |
Predicting structural material degradation in advanced nuclear reactors with ion irradiation |
title_full |
Predicting structural material degradation in advanced nuclear reactors with ion irradiation |
title_fullStr |
Predicting structural material degradation in advanced nuclear reactors with ion irradiation |
title_full_unstemmed |
Predicting structural material degradation in advanced nuclear reactors with ion irradiation |
title_sort |
predicting structural material degradation in advanced nuclear reactors with ion irradiation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b0dac1afc95c4188802f6be71d69079c |
work_keys_str_mv |
AT stephentaller predictingstructuralmaterialdegradationinadvancednuclearreactorswithionirradiation AT gerritvancoevering predictingstructuralmaterialdegradationinadvancednuclearreactorswithionirradiation AT briandwirth predictingstructuralmaterialdegradationinadvancednuclearreactorswithionirradiation AT garyswas predictingstructuralmaterialdegradationinadvancednuclearreactorswithionirradiation |
_version_ |
1718391983683141632 |