Solitary wave solutions of the ionic currents along microtubule dynamical equations via analytical mathematical method
In this article, a new generalized exponential rational function method (GERFM) is employed to extract new solitary wave solutions for the ionic currents along microtubules dynamical equations, which is very interested in nanobiosciences. In this article, the stability of the solutions is also studi...
Guardado en:
Autores principales: | Aljahdaly Noufe H., Alyoubi Amjad F., Seadawy Aly R. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b0eb99193b0f413dbc6bd66ed3b05c05 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Construction of abundant novel analytical solutions of the space–time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods
por: Seadawy Aly R., et al.
Publicado: (2021) -
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
por: Pengxue Cui, et al.
Publicado: (2021) -
Classes of new analytical soliton solutions to some nonlinear evolution equations
por: Yan Cao, et al.
Publicado: (2021) -
Dynamical behaviour of shallow water waves and solitary wave solutions of the Dullin-Gottwald-Holm dynamical system
por: M.H. Raddadi, et al.
Publicado: (2021) -
Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation
por: Seadawy Aly R., et al.
Publicado: (2021)