Solitary wave solutions of the ionic currents along microtubule dynamical equations via analytical mathematical method
In this article, a new generalized exponential rational function method (GERFM) is employed to extract new solitary wave solutions for the ionic currents along microtubules dynamical equations, which is very interested in nanobiosciences. In this article, the stability of the solutions is also studi...
Enregistré dans:
Auteurs principaux: | Aljahdaly Noufe H., Alyoubi Amjad F., Seadawy Aly R. |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b0eb99193b0f413dbc6bd66ed3b05c05 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Construction of abundant novel analytical solutions of the space–time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods
par: Seadawy Aly R., et autres
Publié: (2021) -
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
par: Pengxue Cui, et autres
Publié: (2021) -
Classes of new analytical soliton solutions to some nonlinear evolution equations
par: Yan Cao, et autres
Publié: (2021) -
Dynamical behaviour of shallow water waves and solitary wave solutions of the Dullin-Gottwald-Holm dynamical system
par: M.H. Raddadi, et autres
Publié: (2021) -
Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation
par: Seadawy Aly R., et autres
Publié: (2021)