Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation
Abstract Powerful, broadband terahertz (THz) pulses and its application attract an exponential growth of interests. Dual-color laser filamentation in gases is one of the promising THz sources because of the scalability of the THz energy and wavelength with input parameters. But the additional phase...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b105f715eb064a95b238184da0498d02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b105f715eb064a95b238184da0498d02 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b105f715eb064a95b238184da0498d022021-12-02T15:23:03ZIntensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation10.1038/s41598-020-80105-72045-2322https://doaj.org/article/b105f715eb064a95b238184da0498d022021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80105-7https://doaj.org/toc/2045-2322Abstract Powerful, broadband terahertz (THz) pulses and its application attract an exponential growth of interests. Dual-color laser filamentation in gases is one of the promising THz sources because of the scalability of the THz energy and wavelength with input parameters. But the additional phase induced by the nonlinearities associated with high intensities cannot be neglected because it may result in modulation of the THz waves. We investigate the influences of the infrared pump energy and air dispersion on the terahertz generation in dual-color laser filament. We observe that optimum dual-color laser relative phase of the THz generation undergoes a linear shift with increasing pump energy due to the intensity-induced refractive index change. This phase shift is verified by the spectral broadening of a two-color laser affected by the same mechanism. The result improves our understanding of the theoretical framework for a higher power THz source.Chen GongIwao KawayamaHironaru MurakamiTakahiro TeramotoMasayoshi TonouchiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Chen Gong Iwao Kawayama Hironaru Murakami Takahiro Teramoto Masayoshi Tonouchi Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation |
description |
Abstract Powerful, broadband terahertz (THz) pulses and its application attract an exponential growth of interests. Dual-color laser filamentation in gases is one of the promising THz sources because of the scalability of the THz energy and wavelength with input parameters. But the additional phase induced by the nonlinearities associated with high intensities cannot be neglected because it may result in modulation of the THz waves. We investigate the influences of the infrared pump energy and air dispersion on the terahertz generation in dual-color laser filament. We observe that optimum dual-color laser relative phase of the THz generation undergoes a linear shift with increasing pump energy due to the intensity-induced refractive index change. This phase shift is verified by the spectral broadening of a two-color laser affected by the same mechanism. The result improves our understanding of the theoretical framework for a higher power THz source. |
format |
article |
author |
Chen Gong Iwao Kawayama Hironaru Murakami Takahiro Teramoto Masayoshi Tonouchi |
author_facet |
Chen Gong Iwao Kawayama Hironaru Murakami Takahiro Teramoto Masayoshi Tonouchi |
author_sort |
Chen Gong |
title |
Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation |
title_short |
Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation |
title_full |
Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation |
title_fullStr |
Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation |
title_full_unstemmed |
Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation |
title_sort |
intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b105f715eb064a95b238184da0498d02 |
work_keys_str_mv |
AT chengong intensitydependentselfinduceddualcolorlaserphasemodulationanditseffectonterahertzgeneration AT iwaokawayama intensitydependentselfinduceddualcolorlaserphasemodulationanditseffectonterahertzgeneration AT hironarumurakami intensitydependentselfinduceddualcolorlaserphasemodulationanditseffectonterahertzgeneration AT takahiroteramoto intensitydependentselfinduceddualcolorlaserphasemodulationanditseffectonterahertzgeneration AT masayoshitonouchi intensitydependentselfinduceddualcolorlaserphasemodulationanditseffectonterahertzgeneration |
_version_ |
1718387348830420992 |