B-MFO: A Binary Moth-Flame Optimization for Feature Selection from Medical Datasets
Advancements in medical technology have created numerous large datasets including many features. Usually, all captured features are not necessary, and there are redundant and irrelevant features, which reduce the performance of algorithms. To tackle this challenge, many metaheuristic algorithms are...
Guardado en:
Autores principales: | Mohammad H. Nadimi-Shahraki, Mahdis Banaie-Dezfouli, Hoda Zamani, Shokooh Taghian, Seyedali Mirjalili |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b114659a5c654ecdb3646531bfc5b459 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DMFO-CD: A Discrete Moth-Flame Optimization Algorithm for Community Detection
por: Mohammad H. Nadimi-Shahraki, et al.
Publicado: (2021) -
Overview on Binary Optimization Using Swarm-Inspired Algorithms
por: Mariana Macedo, et al.
Publicado: (2021) -
A Boosted Particle Swarm Method for Energy Efficiency Optimization of PRO Systems
por: Yingxue Chen, et al.
Publicado: (2021) -
Sentiment Analysis in Social Networks Using Social Spider Optimization Algorithm
por: Cem Baydogan, et al.
Publicado: (2021) -
A Modified Binary Pigeon-Inspired Algorithm for Solving the Multi-dimensional Knapsack Problem
por: Bolaji Asaju La’aro, et al.
Publicado: (2020)