Event-based backpropagation can compute exact gradients for spiking neural networks
Abstract Spiking neural networks combine analog computation with event-based communication using discrete spikes. While the impressive advances of deep learning are enabled by training non-spiking artificial neural networks using the backpropagation algorithm, applying this algorithm to spiking netw...
Guardado en:
Autores principales: | Timo C. Wunderlich, Christian Pehle |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b122f4ad7eb4420e80716f2cff95fb3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
por: Qianyi Li, et al.
Publicado: (2021) -
Lithological information extraction and classification in hyperspectral remote sensing data using Backpropagation Neural Network.
por: Zhengyang Wang, et al.
Publicado: (2021) -
Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid
por: Jawaher Lafi Aljohani, et al.
Publicado: (2021) -
FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency
por: Gianluca Susi, et al.
Publicado: (2021) -
ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking Neural Networks
por: Yihan Lin, et al.
Publicado: (2021)