Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection

Abstract Continuous structural parameterization (CSP) is a proposed method for approximating different numerical model parameterizations of the same process as functions of the same grid‐scale variables. This allows systematic comparison of parameterizations with each other and observations or resol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: F. H. Lambert, P. G. Challenor, N. T. Lewis, D. J. McNeall, N. Owen, I. A. Boutle, H. M. Christensen, R. J. Keane, N. J. Mayne, A. Stirling, M. J. Webb
Formato: article
Lenguaje:EN
Publicado: American Geophysical Union (AGU) 2020
Materias:
Acceso en línea:https://doaj.org/article/b128f9c346d8450187d95b2c5d0d3858
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b128f9c346d8450187d95b2c5d0d3858
record_format dspace
spelling oai:doaj.org-article:b128f9c346d8450187d95b2c5d0d38582021-11-15T14:20:27ZContinuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection1942-246610.1029/2020MS002085https://doaj.org/article/b128f9c346d8450187d95b2c5d0d38582020-08-01T00:00:00Zhttps://doi.org/10.1029/2020MS002085https://doaj.org/toc/1942-2466Abstract Continuous structural parameterization (CSP) is a proposed method for approximating different numerical model parameterizations of the same process as functions of the same grid‐scale variables. This allows systematic comparison of parameterizations with each other and observations or resolved simulations of the same process. Using the example of two convection schemes running in the Met Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two schemes, and differences between the parameterizations and resolved convection simulated by a high resolution simulation. When the original convection schemes are replaced with their CSP emulators within the UM, basic features of the original model climate and some features of climate change are reproduced, demonstrating that CSP can capture much of the important behavior of the schemes. Our results open the possibility that future work will estimate uncertainty in model projections of climate change from estimates of uncertainty in simulation of the relevant physical processes.F. H. LambertP. G. ChallenorN. T. LewisD. J. McNeallN. OwenI. A. BoutleH. M. ChristensenR. J. KeaneN. J. MayneA. StirlingM. J. WebbAmerican Geophysical Union (AGU)articlestatistical modelingconvectionparameterizationGCM modelinghigh resolutionPhysical geographyGB3-5030OceanographyGC1-1581ENJournal of Advances in Modeling Earth Systems, Vol 12, Iss 8, Pp n/a-n/a (2020)
institution DOAJ
collection DOAJ
language EN
topic statistical modeling
convection
parameterization
GCM modeling
high resolution
Physical geography
GB3-5030
Oceanography
GC1-1581
spellingShingle statistical modeling
convection
parameterization
GCM modeling
high resolution
Physical geography
GB3-5030
Oceanography
GC1-1581
F. H. Lambert
P. G. Challenor
N. T. Lewis
D. J. McNeall
N. Owen
I. A. Boutle
H. M. Christensen
R. J. Keane
N. J. Mayne
A. Stirling
M. J. Webb
Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
description Abstract Continuous structural parameterization (CSP) is a proposed method for approximating different numerical model parameterizations of the same process as functions of the same grid‐scale variables. This allows systematic comparison of parameterizations with each other and observations or resolved simulations of the same process. Using the example of two convection schemes running in the Met Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two schemes, and differences between the parameterizations and resolved convection simulated by a high resolution simulation. When the original convection schemes are replaced with their CSP emulators within the UM, basic features of the original model climate and some features of climate change are reproduced, demonstrating that CSP can capture much of the important behavior of the schemes. Our results open the possibility that future work will estimate uncertainty in model projections of climate change from estimates of uncertainty in simulation of the relevant physical processes.
format article
author F. H. Lambert
P. G. Challenor
N. T. Lewis
D. J. McNeall
N. Owen
I. A. Boutle
H. M. Christensen
R. J. Keane
N. J. Mayne
A. Stirling
M. J. Webb
author_facet F. H. Lambert
P. G. Challenor
N. T. Lewis
D. J. McNeall
N. Owen
I. A. Boutle
H. M. Christensen
R. J. Keane
N. J. Mayne
A. Stirling
M. J. Webb
author_sort F. H. Lambert
title Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
title_short Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
title_full Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
title_fullStr Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
title_full_unstemmed Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
title_sort continuous structural parameterization: a proposed method for representing different model parameterizations within one structure demonstrated for atmospheric convection
publisher American Geophysical Union (AGU)
publishDate 2020
url https://doaj.org/article/b128f9c346d8450187d95b2c5d0d3858
work_keys_str_mv AT fhlambert continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT pgchallenor continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT ntlewis continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT djmcneall continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT nowen continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT iaboutle continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT hmchristensen continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT rjkeane continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT njmayne continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT astirling continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
AT mjwebb continuousstructuralparameterizationaproposedmethodforrepresentingdifferentmodelparameterizationswithinonestructuredemonstratedforatmosphericconvection
_version_ 1718428397172948992