Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes
Thirapit Subongkot, Boonnada Pamornpathomkul, Theerasak Rojanarata, Praneet Opanasopit, Tanasait Ngawhirunpat Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: This study aimed to determine the mechanism by which ultradeformable liposomes (ULs) with terpenes enhance ski...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b135626a6dcb4c098fb2d223f0fa98c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b135626a6dcb4c098fb2d223f0fa98c9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b135626a6dcb4c098fb2d223f0fa98c92021-12-02T07:13:42ZInvestigation of the mechanism of enhanced skin penetration by ultradeformable liposomes1178-2013https://doaj.org/article/b135626a6dcb4c098fb2d223f0fa98c92014-07-01T00:00:00Zhttp://www.dovepress.com/investigation-of-the-mechanism-of-enhanced-skin-penetration-by-ultrade-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Thirapit Subongkot, Boonnada Pamornpathomkul, Theerasak Rojanarata, Praneet Opanasopit, Tanasait Ngawhirunpat Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: This study aimed to determine the mechanism by which ultradeformable liposomes (ULs) with terpenes enhance skin penetration for transdermal drug delivery of fluorescein sodium, using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Skin treated with ULs containing d-limonene, obtained from in vitro skin penetration studies, was examined via TEM to investigate the effect of ULs on ultrastructural changes of the skin, and to evaluate the mechanism by which ULs enhance skin penetration. The receiver medium collected was analyzed by TEM and CLSM to evaluate the mechanism of the drug carrier system. Our findings revealed that ULs could enhance penetration by denaturing intracellular keratin, degrading corneodesmosomes, and disrupting the intercellular lipid arrangement in the stratum corneum. As inferred from the presence of intact vesicles in the receiver medium, ULs are also able to act as a drug carrier system. CLSM images showed that intact vesicles of ULs might penetrate the skin via a transappendageal pathway, potentially a major route of skin penetration. Keywords: ultradeformable liposomes, mechanism of enhanced skin penetration, transmission electron microscopy, confocal laser scanning microscopySubongkot TPamornpathomkul BRojanarata TOpanasopit PNgawhirunpat TDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 3539-3550 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Subongkot T Pamornpathomkul B Rojanarata T Opanasopit P Ngawhirunpat T Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes |
description |
Thirapit Subongkot, Boonnada Pamornpathomkul, Theerasak Rojanarata, Praneet Opanasopit, Tanasait Ngawhirunpat Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: This study aimed to determine the mechanism by which ultradeformable liposomes (ULs) with terpenes enhance skin penetration for transdermal drug delivery of fluorescein sodium, using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Skin treated with ULs containing d-limonene, obtained from in vitro skin penetration studies, was examined via TEM to investigate the effect of ULs on ultrastructural changes of the skin, and to evaluate the mechanism by which ULs enhance skin penetration. The receiver medium collected was analyzed by TEM and CLSM to evaluate the mechanism of the drug carrier system. Our findings revealed that ULs could enhance penetration by denaturing intracellular keratin, degrading corneodesmosomes, and disrupting the intercellular lipid arrangement in the stratum corneum. As inferred from the presence of intact vesicles in the receiver medium, ULs are also able to act as a drug carrier system. CLSM images showed that intact vesicles of ULs might penetrate the skin via a transappendageal pathway, potentially a major route of skin penetration. Keywords: ultradeformable liposomes, mechanism of enhanced skin penetration, transmission electron microscopy, confocal laser scanning microscopy |
format |
article |
author |
Subongkot T Pamornpathomkul B Rojanarata T Opanasopit P Ngawhirunpat T |
author_facet |
Subongkot T Pamornpathomkul B Rojanarata T Opanasopit P Ngawhirunpat T |
author_sort |
Subongkot T |
title |
Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes |
title_short |
Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes |
title_full |
Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes |
title_fullStr |
Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes |
title_full_unstemmed |
Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes |
title_sort |
investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes |
publisher |
Dove Medical Press |
publishDate |
2014 |
url |
https://doaj.org/article/b135626a6dcb4c098fb2d223f0fa98c9 |
work_keys_str_mv |
AT subongkott investigationofthemechanismofenhancedskinpenetrationbyultradeformableliposomes AT pamornpathomkulb investigationofthemechanismofenhancedskinpenetrationbyultradeformableliposomes AT rojanaratat investigationofthemechanismofenhancedskinpenetrationbyultradeformableliposomes AT opanasopitp investigationofthemechanismofenhancedskinpenetrationbyultradeformableliposomes AT ngawhirunpatt investigationofthemechanismofenhancedskinpenetrationbyultradeformableliposomes |
_version_ |
1718399534554415104 |