Construction of Prediction Model for Multi-Feature Fusion Time Sequence Data of Internet of Things Under VR and LSTM
The purpose of the study is to improve the utilization rate of time sequence data generated by the Internet of Things (IoT), and explore their hidden values. Based on the deep neural network of Long Short-Term Memory (LSTM), the prediction model of multi-feature fusion time sequence data under Virtu...
Guardado en:
Autores principales: | Xinwen Liao, Xuyuan Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b13a11aea13c4f9cb8b64581a13308de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
por: Balduíno César Mateus, et al.
Publicado: (2021) -
Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
por: Song Weixing, et al.
Publicado: (2021) -
Load data recovery method based on SOM-LSTM neural network
por: Yiming Ma, et al.
Publicado: (2022) -
Short and Medium-Term Prediction of Winter Wheat NDVI Based on the DTW–LSTM Combination Method and MODIS Time Series Data
por: Fa Zhao, et al.
Publicado: (2021) -
Research on LSTM+Attention Model of Infant Cry Classification
por: Tianye Jian, et al.
Publicado: (2021)