Using Optimisation Meta-Heuristics for the Roughness Estimation Problem in River Flow Analysis
Climate change threats make it difficult to perform reliable and quick predictions on floods forecasting. This gives rise to the need of having advanced methods, e.g., computational intelligence tools, to improve upon the results from flooding events simulations and, in turn, design best practices f...
Guardado en:
Autores principales: | Antonio Agresta, Marco Baioletti, Chiara Biscarini, Fabio Caraffini, Alfredo Milani, Valentino Santucci |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b13aac08f36b4ff5b6a2ca145ec31fd0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Feature-Independent Hyper-Heuristic Approach for Solving the Knapsack Problem
por: Xavier Sánchez-Díaz, et al.
Publicado: (2021) -
The Vehicle Routing Problem: State-of-the-Art Classification and Review
por: Shi-Yi Tan, et al.
Publicado: (2021) -
Embodied Heuristics
por: Gerd Gigerenzer
Publicado: (2021) -
Application of Whale Optimization Algorithm Combined with Adaptive Neuro-Fuzzy Inference System for Estimating Suspended Sediment Load
por: Hojjat Emami, et al.
Publicado: (2021) -
Determination of river design discharge (Tar River case study)
por: Mohammad Sharifi, et al.
Publicado: (2021)