Using Optimisation Meta-Heuristics for the Roughness Estimation Problem in River Flow Analysis
Climate change threats make it difficult to perform reliable and quick predictions on floods forecasting. This gives rise to the need of having advanced methods, e.g., computational intelligence tools, to improve upon the results from flooding events simulations and, in turn, design best practices f...
Enregistré dans:
Auteurs principaux: | Antonio Agresta, Marco Baioletti, Chiara Biscarini, Fabio Caraffini, Alfredo Milani, Valentino Santucci |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b13aac08f36b4ff5b6a2ca145ec31fd0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Feature-Independent Hyper-Heuristic Approach for Solving the Knapsack Problem
par: Xavier Sánchez-Díaz, et autres
Publié: (2021) -
The Vehicle Routing Problem: State-of-the-Art Classification and Review
par: Shi-Yi Tan, et autres
Publié: (2021) -
Embodied Heuristics
par: Gerd Gigerenzer
Publié: (2021) -
Application of Whale Optimization Algorithm Combined with Adaptive Neuro-Fuzzy Inference System for Estimating Suspended Sediment Load
par: Hojjat Emami, et autres
Publié: (2021) -
Determination of river design discharge (Tar River case study)
par: Mohammad Sharifi, et autres
Publié: (2021)