Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks

Luboeinski and Tetzlaff develop a theoretical model, which integrates mechanisms underlying the synaptic-tagging-and-capture (STC) hypothesis with calcium-based synaptic plasticity in a recurrent spiking neural network, to describe consolidation of memory representations. They show that STC mechanis...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Jannik Luboeinski, Christian Tetzlaff
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/b13fad3d6a5d49d8a558acdd08c9cfb0
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Luboeinski and Tetzlaff develop a theoretical model, which integrates mechanisms underlying the synaptic-tagging-and-capture (STC) hypothesis with calcium-based synaptic plasticity in a recurrent spiking neural network, to describe consolidation of memory representations. They show that STC mechanisms cause improved memory recall, which may assist the understanding of storing information in biological and artificial neural circuits.